Using atmospheric inputs for Artificial Neural Networks to improve wind turbine power prediction
Author
Abstract
Suggested Citation
DOI: 10.1016/j.energy.2019.116273
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Ata, Rasit, 2015. "Artificial neural networks applications in wind energy systems: a review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 534-562.
- Oh, Hyunseok & Kim, Bumsuk, 2015. "Comparison and verification of the deviation between guaranteed and measured wind turbine power performance in complex terrain," Energy, Elsevier, vol. 85(C), pages 23-29.
- Manobel, Bartolomé & Sehnke, Frank & Lazzús, Juan A. & Salfate, Ignacio & Felder, Martin & Montecinos, Sonia, 2018. "Wind turbine power curve modeling based on Gaussian Processes and Artificial Neural Networks," Renewable Energy, Elsevier, vol. 125(C), pages 1015-1020.
- Mercadier, Mathieu & Lardy, Jean-Pierre, 2019.
"Credit spread approximation and improvement using random forest regression,"
European Journal of Operational Research, Elsevier, vol. 277(1), pages 351-365.
- Mathieu Mercadier & Jean-Pierre Lardy, 2019. "Credit spread approximation and improvement using random forest regression," Post-Print hal-03241566, HAL.
- Mathieu Mercadier & Jean-Pierre Lardy, 2021. "Credit spread approximation and improvement using random forest regression," Papers 2106.07358, arXiv.org.
- Mathieu Mercadier & Jean-Pierre Lardy, 2019. "Credit Spread Approximation and Improvement using Random Forest Regression," Post-Print hal-02057019, HAL.
- Ekonomou, L., 2010. "Greek long-term energy consumption prediction using artificial neural networks," Energy, Elsevier, vol. 35(2), pages 512-517.
- Liu, Jinqiang & Wang, Xiaoru & Lu, Yun, 2017. "A novel hybrid methodology for short-term wind power forecasting based on adaptive neuro-fuzzy inference system," Renewable Energy, Elsevier, vol. 103(C), pages 620-629.
- Pelletier, Francis & Masson, Christian & Tahan, Antoine, 2016. "Wind turbine power curve modelling using artificial neural network," Renewable Energy, Elsevier, vol. 89(C), pages 207-214.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Liu, Xin & Cao, Zheming & Zhang, Zijun, 2021. "Short-term predictions of multiple wind turbine power outputs based on deep neural networks with transfer learning," Energy, Elsevier, vol. 217(C).
- Liu, Zhi-Feng & Liu, You-Yuan & Chen, Xiao-Rui & Zhang, Shu-Rui & Luo, Xing-Fu & Li, Ling-Ling & Yang, Yi-Zhou & You, Guo-Dong, 2024. "A novel deep learning-based evolutionary model with potential attention and memory decay-enhancement strategy for short-term wind power point-interval forecasting," Applied Energy, Elsevier, vol. 360(C).
- Yun, Eunjeong & Hur, Jin, 2021. "Probabilistic estimation model of power curve to enhance power output forecasting of wind generating resources," Energy, Elsevier, vol. 223(C).
- Ogliari, Emanuele & Guilizzoni, Manfredo & Giglio, Alessandro & Pretto, Silvia, 2021. "Wind power 24-h ahead forecast by an artificial neural network and an hybrid model: Comparison of the predictive performance," Renewable Energy, Elsevier, vol. 178(C), pages 1466-1474.
- Navarkar, Abhishek & Hasti, Veeraraghava Raju & Deneke, Elihu & Gore, Jay P., 2020. "A data-driven model for thermodynamic properties of a steam generator under cycling operation," Energy, Elsevier, vol. 211(C).
- Neshat, Mehdi & Nezhad, Meysam Majidi & Abbasnejad, Ehsan & Mirjalili, Seyedali & Groppi, Daniele & Heydari, Azim & Tjernberg, Lina Bertling & Astiaso Garcia, Davide & Alexander, Bradley & Shi, Qinfen, 2021. "Wind turbine power output prediction using a new hybrid neuro-evolutionary method," Energy, Elsevier, vol. 229(C).
- Bashir, Hassan & Sibtain, Muhammad & Hanay, Özge & Azam, Muhammad Imran & Qurat-ul-Ain, & Saleem, Snoober, 2023. "Decomposition and Harris hawks optimized multivariate wind speed forecasting utilizing sequence2sequence-based spatiotemporal attention," Energy, Elsevier, vol. 278(PB).
- Duan, Jiandong & Wang, Peng & Ma, Wentao & Tian, Xuan & Fang, Shuai & Cheng, Yulin & Chang, Ying & Liu, Haofan, 2021. "Short-term wind power forecasting using the hybrid model of improved variational mode decomposition and Correntropy Long Short -term memory neural network," Energy, Elsevier, vol. 214(C).
- Bingchun Liu & Shijie Zhao & Xiaogang Yu & Lei Zhang & Qingshan Wang, 2020. "A Novel Deep Learning Approach for Wind Power Forecasting Based on WD-LSTM Model," Energies, MDPI, vol. 13(18), pages 1-17, September.
- Pérez Albornoz, C. & Escalante Soberanis, M.A. & Ramírez Rivera, V. & Rivero, M., 2022. "Review of atmospheric stability estimations for wind power applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 163(C).
- Meka, Rajitha & Alaeddini, Adel & Bhaganagar, Kiran, 2021. "A robust deep learning framework for short-term wind power forecast of a full-scale wind farm using atmospheric variables," Energy, Elsevier, vol. 221(C).
- Sasser, Christiana & Yu, Meilin & Delgado, Ruben, 2022. "Improvement of wind power prediction from meteorological characterization with machine learning models," Renewable Energy, Elsevier, vol. 183(C), pages 491-501.
- Qian, Tong & Tang, Wenhu & Wu, Qinghua, 2020. "A fully decentralized dual consensus method for carbon trading power dispatch with wind power," Energy, Elsevier, vol. 203(C).
- Jargalsaikhan, Nyam & Ueda, Soichiro & Masahiro, Furukakoi & Matayoshi, Hidehito & Mikhaylov, Alexey & Byambaa, Sergelen & Senjyu, Tomonobu, 2024. "Exploring influence of air density deviation on power production of wind energy conversion system: Study on correction method," Renewable Energy, Elsevier, vol. 220(C).
- Adam Krechowicz & Maria Krechowicz & Katarzyna Poczeta, 2022. "Machine Learning Approaches to Predict Electricity Production from Renewable Energy Sources," Energies, MDPI, vol. 15(23), pages 1-41, December.
- Erik Möllerström & Sean Gregory & Aromal Sugathan, 2021. "Improvement of AEP Predictions with Time for Swedish Wind Farms," Energies, MDPI, vol. 14(12), pages 1-12, June.
- Kwak, Sanghyeok & Choi, Jaehong & Lee, Min Chul & Yoon, Youngbin, 2021. "Predicting instability frequency and amplitude using artificial neural network in a partially premixed combustor," Energy, Elsevier, vol. 230(C).
- Marek Borowski & Piotr Życzkowski & Klaudia Zwolińska & Rafał Łuczak & Zbigniew Kuczera, 2021. "The Security of Energy Supply from Internal Combustion Engines Using Coal Mine Methane—Forecasting of the Electrical Energy Generation," Energies, MDPI, vol. 14(11), pages 1-18, May.
- Du, Qiuwan & Yang, Like & Li, Liangliang & Liu, Tianyuan & Zhang, Di & Xie, Yonghui, 2022. "Aerodynamic design and optimization of blade end wall profile of turbomachinery based on series convolutional neural network," Energy, Elsevier, vol. 244(PA).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Shahram Hanifi & Xiaolei Liu & Zi Lin & Saeid Lotfian, 2020. "A Critical Review of Wind Power Forecasting Methods—Past, Present and Future," Energies, MDPI, vol. 13(15), pages 1-24, July.
- Miguel Á. Rodríguez-López & Emilio Cerdá & Pablo del Rio, 2020. "Modeling Wind-Turbine Power Curves: Effects of Environmental Temperature on Wind Energy Generation," Energies, MDPI, vol. 13(18), pages 1-21, September.
- Qiao, Yanhui & Han, Shuang & Zhang, Yajie & Liu, Yongqian & Yan, Jie, 2024. "A multivariable wind turbine power curve modeling method considering segment control differences and short-time self-dependence," Renewable Energy, Elsevier, vol. 222(C).
- Lin, Zi & Liu, Xiaolei, 2020. "Wind power forecasting of an offshore wind turbine based on high-frequency SCADA data and deep learning neural network," Energy, Elsevier, vol. 201(C).
- Rogers, T.J. & Gardner, P. & Dervilis, N. & Worden, K. & Maguire, A.E. & Papatheou, E. & Cross, E.J., 2020. "Probabilistic modelling of wind turbine power curves with application of heteroscedastic Gaussian Process regression," Renewable Energy, Elsevier, vol. 148(C), pages 1124-1136.
- Li, Tenghui & Liu, Xiaolei & Lin, Zi & Morrison, Rory, 2022. "Ensemble offshore Wind Turbine Power Curve modelling – An integration of Isolation Forest, fast Radial Basis Function Neural Network, and metaheuristic algorithm," Energy, Elsevier, vol. 239(PD).
- Sebastiani, Alessandro & Angelou, Nikolas & Peña, Alfredo, 2024. "Wind turbine power curve modelling under wake conditions using measurements from a spinner-mounted lidar," Applied Energy, Elsevier, vol. 364(C).
- Marugán, Alberto Pliego & Márquez, Fausto Pedro García & Perez, Jesus María Pinar & Ruiz-Hernández, Diego, 2018. "A survey of artificial neural network in wind energy systems," Applied Energy, Elsevier, vol. 228(C), pages 1822-1836.
- Yan, Jie & Zhang, Hao & Liu, Yongqian & Han, Shuang & Li, Li, 2019. "Uncertainty estimation for wind energy conversion by probabilistic wind turbine power curve modelling," Applied Energy, Elsevier, vol. 239(C), pages 1356-1370.
- Han, Shuang & Qiao, Yanhui & Yan, Ping & Yan, Jie & Liu, Yongqian & Li, Li, 2020. "Wind turbine power curve modeling based on interval extreme probability density for the integration of renewable energies and electric vehicles," Renewable Energy, Elsevier, vol. 157(C), pages 190-203.
- Muhammad Shahzad Nazir & Fahad Alturise & Sami Alshmrany & Hafiz. M. J Nazir & Muhammad Bilal & Ahmad N. Abdalla & P. Sanjeevikumar & Ziad M. Ali, 2020. "Wind Generation Forecasting Methods and Proliferation of Artificial Neural Network: A Review of Five Years Research Trend," Sustainability, MDPI, vol. 12(9), pages 1-27, May.
- Wang, Yibo & Shao, Xinyao & Liu, Chuang & Cai, Guowei & Kou, Lei & Wu, Zhiqiang, 2019. "Analysis of wind farm output characteristics based on descriptive statistical analysis and envelope domain," Energy, Elsevier, vol. 170(C), pages 580-591.
- Davide Astolfi & Francesco Castellani & Andrea Lombardi & Ludovico Terzi, 2021. "Multivariate SCADA Data Analysis Methods for Real-World Wind Turbine Power Curve Monitoring," Energies, MDPI, vol. 14(4), pages 1-18, February.
- Karamichailidou, Despina & Kaloutsa, Vasiliki & Alexandridis, Alex, 2021. "Wind turbine power curve modeling using radial basis function neural networks and tabu search," Renewable Energy, Elsevier, vol. 163(C), pages 2137-2152.
- Díaz, Santiago & Carta, José A. & Castañeda, Alberto, 2020. "Influence of the variation of meteorological and operational parameters on estimation of the power output of a wind farm with active power control," Renewable Energy, Elsevier, vol. 159(C), pages 812-826.
- Sebastiani, Alessandro & Peña, Alfredo & Troldborg, Niels, 2023. "Numerical evaluation of multivariate power curves for wind turbines in wakes using nacelle lidars," Renewable Energy, Elsevier, vol. 202(C), pages 419-431.
- Xu, Keyi & Yan, Jie & Zhang, Hao & Zhang, Haoran & Han, Shuang & Liu, Yongqian, 2021. "Quantile based probabilistic wind turbine power curve model," Applied Energy, Elsevier, vol. 296(C).
- Ciulla, G. & D’Amico, A. & Di Dio, V. & Lo Brano, V., 2019. "Modelling and analysis of real-world wind turbine power curves: Assessing deviations from nominal curve by neural networks," Renewable Energy, Elsevier, vol. 140(C), pages 477-492.
- Helbing, Georg & Ritter, Matthias, 2018. "Deep Learning for fault detection in wind turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 98(C), pages 189-198.
- Chitsazan, Mohammad Amin & Sami Fadali, M. & Trzynadlowski, Andrzej M., 2019. "Wind speed and wind direction forecasting using echo state network with nonlinear functions," Renewable Energy, Elsevier, vol. 131(C), pages 879-889.
More about this item
Keywords
ANN; Wind energy; Power predictions; Atmospheric boundary layer; Turbulence; Wind turbine;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:190:y:2020:i:c:s0360544219319681. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.