IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0290316.html
   My bibliography  Save this article

Multivariate wind power curve modeling using multivariate adaptive regression splines and regression trees

Author

Listed:
  • Khurram Mushtaq
  • Runmin Zou
  • Asim Waris
  • Kaifeng Yang
  • Ji Wang
  • Javaid Iqbal
  • Mohammed Jameel

Abstract

Wind turbine power curve (WTPC) serves as an important tool for wind turbine condition monitoring and wind power forecasting. Due to complex environmental factors and technical issues of the wind turbines, there are many outliers and inconsistencies present in the recorded data, which cannot be removed through any pre-processing technique. However, the current WTPC models have limited ability to understand such complex relation between wind speed and wind power and have limited non-linear fitting ability, which limit their modelling accuracy. In this paper, the accuracy of the WTPC models is improved in two ways: first is by developing multivariate models and second is by proposing MARS as WTPC modeling technique. MARS is a regression-based flexible modeling technique that automatically models complex the nonlinearities in the data using spline functions. Experimental results show that by incorporating additional inputs the accuracy of the power curve estimation is significantly improved. Also by studying the error distribution it is proved that multivariate models successfully mitigate the adverse effect of hidden outliers, as their distribution has higher peaks and lesser standard deviation, which proves that the errors, are more converged to zero compared to the univariate models. Additionally, MARS with its superior non-linear fitting ability outperforms the compared methods in terms of the error metrics and ranks higher than regression trees and several other popular parametric and non-parametric methods. Finally, an outlier detection method is developed to remove the hidden outliers from the data using the error distribution of the modeled power curves.

Suggested Citation

  • Khurram Mushtaq & Runmin Zou & Asim Waris & Kaifeng Yang & Ji Wang & Javaid Iqbal & Mohammed Jameel, 2023. "Multivariate wind power curve modeling using multivariate adaptive regression splines and regression trees," PLOS ONE, Public Library of Science, vol. 18(8), pages 1-25, August.
  • Handle: RePEc:plo:pone00:0290316
    DOI: 10.1371/journal.pone.0290316
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0290316
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0290316&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0290316?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0290316. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.