IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v159y2020icp812-826.html
   My bibliography  Save this article

Influence of the variation of meteorological and operational parameters on estimation of the power output of a wind farm with active power control

Author

Listed:
  • Díaz, Santiago
  • Carta, José A.
  • Castañeda, Alberto

Abstract

This paper analyses the influence of the variation of meteorological and operational parameters on estimation of the power output of a dispatchable wind farm (WF). The active power set-points (APSPs), established to regulate the wind farm power output (WFPO), are one of the analysed parameters. The WF considered as case study is integrated in the Gorona del Viento wind-hydro power plant (El Hierro-Canary Islands-Spain), which supplies the primary energy demand of the island.

Suggested Citation

  • Díaz, Santiago & Carta, José A. & Castañeda, Alberto, 2020. "Influence of the variation of meteorological and operational parameters on estimation of the power output of a wind farm with active power control," Renewable Energy, Elsevier, vol. 159(C), pages 812-826.
  • Handle: RePEc:eee:renene:v:159:y:2020:i:c:p:812-826
    DOI: 10.1016/j.renene.2020.05.187
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148120308922
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2020.05.187?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Pelletier, Francis & Masson, Christian & Tahan, Antoine, 2016. "Wind turbine power curve modelling using artificial neural network," Renewable Energy, Elsevier, vol. 89(C), pages 207-214.
    2. Manobel, Bartolomé & Sehnke, Frank & Lazzús, Juan A. & Salfate, Ignacio & Felder, Martin & Montecinos, Sonia, 2018. "Wind turbine power curve modeling based on Gaussian Processes and Artificial Neural Networks," Renewable Energy, Elsevier, vol. 125(C), pages 1015-1020.
    3. Agüera-Pérez, Agustín & Palomares-Salas, José Carlos & González de la Rosa, Juan José & Florencias-Oliveros, Olivia, 2018. "Weather forecasts for microgrid energy management: Review, discussion and recommendations," Applied Energy, Elsevier, vol. 228(C), pages 265-278.
    4. Carta, José A. & Cabrera, Pedro & Matías, José M. & Castellano, Fernando, 2015. "Comparison of feature selection methods using ANNs in MCP-wind speed methods. A case study," Applied Energy, Elsevier, vol. 158(C), pages 490-507.
    5. Gérard Biau & Erwan Scornet, 2016. "A random forest guided tour," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 25(2), pages 197-227, June.
    6. Sergio Velázquez Medina & José A. Carta & Ulises Portero Ajenjo, 2019. "Performance Sensitivity of a Wind Farm Power Curve Model to Different Signals of the Input Layer of ANNs: Case Studies in the Canary Islands," Complexity, Hindawi, vol. 2019, pages 1-11, March.
    7. Marčiukaitis, Mantas & Žutautaitė, Inga & Martišauskas, Linas & Jokšas, Benas & Gecevičius, Giedrius & Sfetsos, Athanasios, 2017. "Non-linear regression model for wind turbine power curve," Renewable Energy, Elsevier, vol. 113(C), pages 732-741.
    8. Marvuglia, Antonino & Messineo, Antonio, 2012. "Monitoring of wind farms’ power curves using machine learning techniques," Applied Energy, Elsevier, vol. 98(C), pages 574-583.
    9. Ouyang, Tinghui & Kusiak, Andrew & He, Yusen, 2017. "Modeling wind-turbine power curve: A data partitioning and mining approach," Renewable Energy, Elsevier, vol. 102(PA), pages 1-8.
    10. Fang Liu & Ranran Li & Aliona Dreglea, 2019. "Wind Speed and Power Ultra Short-Term Robust Forecasting Based on Takagi–Sugeno Fuzzy Model," Energies, MDPI, vol. 12(18), pages 1-16, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Carta, José A. & Cabrera, Pedro, 2021. "Optimal sizing of stand-alone wind-powered seawater reverse osmosis plants without use of massive energy storage," Applied Energy, Elsevier, vol. 304(C).
    2. Choupin, Ophelie & Del Río-Gamero, B. & Schallenberg-Rodríguez, Julieta & Yánez-Rosales, Pablo, 2022. "Integration of assessment-methods for wave renewable energy: Resource and installation feasibility," Renewable Energy, Elsevier, vol. 185(C), pages 455-482.
    3. Mingyu Li & Dongxiao Niu & Zhengsen Ji & Xiwen Cui & Lijie Sun, 2021. "Forecast Research on Multidimensional Influencing Factors of Global Offshore Wind Power Investment Based on Random Forest and Elastic Net," Sustainability, MDPI, vol. 13(21), pages 1-19, November.
    4. Carta, José A. & Díaz, Santiago & Castañeda, Alberto, 2020. "A global sensitivity analysis method applied to wind farm power output estimation models," Applied Energy, Elsevier, vol. 280(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Karamichailidou, Despina & Kaloutsa, Vasiliki & Alexandridis, Alex, 2021. "Wind turbine power curve modeling using radial basis function neural networks and tabu search," Renewable Energy, Elsevier, vol. 163(C), pages 2137-2152.
    2. Rogers, T.J. & Gardner, P. & Dervilis, N. & Worden, K. & Maguire, A.E. & Papatheou, E. & Cross, E.J., 2020. "Probabilistic modelling of wind turbine power curves with application of heteroscedastic Gaussian Process regression," Renewable Energy, Elsevier, vol. 148(C), pages 1124-1136.
    3. Yan, Jie & Zhang, Hao & Liu, Yongqian & Han, Shuang & Li, Li, 2019. "Uncertainty estimation for wind energy conversion by probabilistic wind turbine power curve modelling," Applied Energy, Elsevier, vol. 239(C), pages 1356-1370.
    4. Mehrjoo, Mehrdad & Jafari Jozani, Mohammad & Pawlak, Miroslaw, 2020. "Wind turbine power curve modeling for reliable power prediction using monotonic regression," Renewable Energy, Elsevier, vol. 147(P1), pages 214-222.
    5. Xu, Keyi & Yan, Jie & Zhang, Hao & Zhang, Haoran & Han, Shuang & Liu, Yongqian, 2021. "Quantile based probabilistic wind turbine power curve model," Applied Energy, Elsevier, vol. 296(C).
    6. Carta, José A. & Díaz, Santiago & Castañeda, Alberto, 2020. "A global sensitivity analysis method applied to wind farm power output estimation models," Applied Energy, Elsevier, vol. 280(C).
    7. Han, Shuang & Qiao, Yanhui & Yan, Ping & Yan, Jie & Liu, Yongqian & Li, Li, 2020. "Wind turbine power curve modeling based on interval extreme probability density for the integration of renewable energies and electric vehicles," Renewable Energy, Elsevier, vol. 157(C), pages 190-203.
    8. Sergio Velázquez Medina & José A. Carta & Ulises Portero Ajenjo, 2019. "Performance Sensitivity of a Wind Farm Power Curve Model to Different Signals of the Input Layer of ANNs: Case Studies in the Canary Islands," Complexity, Hindawi, vol. 2019, pages 1-11, March.
    9. Gonzalez, Elena & Stephen, Bruce & Infield, David & Melero, Julio J., 2019. "Using high-frequency SCADA data for wind turbine performance monitoring: A sensitivity study," Renewable Energy, Elsevier, vol. 131(C), pages 841-853.
    10. Marino Marrocu & Luca Massidda, 2017. "A Simple and Effective Approach for the Prediction of Turbine Power Production From Wind Speed Forecast," Energies, MDPI, vol. 10(12), pages 1-14, November.
    11. Francisco Bilendo & Angela Meyer & Hamed Badihi & Ningyun Lu & Philippe Cambron & Bin Jiang, 2022. "Applications and Modeling Techniques of Wind Turbine Power Curve for Wind Farms—A Review," Energies, MDPI, vol. 16(1), pages 1-38, December.
    12. Tugce Demirdelen & Pırıl Tekin & Inayet Ozge Aksu & Firat Ekinci, 2019. "The Prediction Model of Characteristics for Wind Turbines Based on Meteorological Properties Using Neural Network Swarm Intelligence," Sustainability, MDPI, vol. 11(17), pages 1-18, September.
    13. Bilal, Boudy & Adjallah, Kondo Hloindo & Sava, Alexandre & Yetilmezsoy, Kaan & Kıyan, Emel, 2022. "Wind power conversion system model identification using adaptive neuro-fuzzy inference systems: A case study," Energy, Elsevier, vol. 239(PB).
    14. Sebastiani, Alessandro & Peña, Alfredo & Troldborg, Niels, 2023. "Numerical evaluation of multivariate power curves for wind turbines in wakes using nacelle lidars," Renewable Energy, Elsevier, vol. 202(C), pages 419-431.
    15. Zou, Runmin & Yang, Jiaxin & Wang, Yun & Liu, Fang & Essaaidi, Mohamed & Srinivasan, Dipti, 2021. "Wind turbine power curve modeling using an asymmetric error characteristic-based loss function and a hybrid intelligent optimizer," Applied Energy, Elsevier, vol. 304(C).
    16. Wang, Yun & Duan, Xiaocong & Zou, Runmin & Zhang, Fan & Li, Yifen & Hu, Qinghua, 2023. "A novel data-driven deep learning approach for wind turbine power curve modeling," Energy, Elsevier, vol. 270(C).
    17. Mehrjoo, Mehrdad & Jafari Jozani, Mohammad & Pawlak, Miroslaw, 2021. "Toward hybrid approaches for wind turbine power curve modeling with balanced loss functions and local weighting schemes," Energy, Elsevier, vol. 218(C).
    18. Miguel Á. Rodríguez-López & Emilio Cerdá & Pablo del Rio, 2020. "Modeling Wind-Turbine Power Curves: Effects of Environmental Temperature on Wind Energy Generation," Energies, MDPI, vol. 13(18), pages 1-21, September.
    19. Hu, Yang & Xi, Yunhua & Pan, Chenyang & Li, Gengda & Chen, Baowei, 2020. "Daily condition monitoring of grid-connected wind turbine via high-fidelity power curve and its comprehensive rating," Renewable Energy, Elsevier, vol. 146(C), pages 2095-2111.
    20. Ravi Pandit & David Infield, 2018. "Gaussian Process Operational Curves for Wind Turbine Condition Monitoring," Energies, MDPI, vol. 11(7), pages 1-20, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:159:y:2020:i:c:p:812-826. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.