IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v178y2021icp1466-1474.html
   My bibliography  Save this article

Wind power 24-h ahead forecast by an artificial neural network and an hybrid model: Comparison of the predictive performance

Author

Listed:
  • Ogliari, Emanuele
  • Guilizzoni, Manfredo
  • Giglio, Alessandro
  • Pretto, Silvia

Abstract

In the last decade, wind has experienced a strong expansion reaching 591 GW (2018) of installed capacity worldwide. The higher penetration of variable renewable energy sources (wind and solar) has led to a growing demand for reliable forecast methods, to properly integrate these sources in the electric grid, decreasing the cost of electricity production and power curtailments. The present work proposes diverse wind power predictive approaches based on a physical model, artificial neural networks and an hybridization of the two. The time series used is composed of two-years hourly measurements of a wind farm in Italy, consisting of 24 wind turbines with a nominal power of 0.66 MW. To ensure an adequate reliability and robustness of the results obtained from the performance evaluation, it was chosen to use eight different error metrics and to evaluate the accuracy considering two different predictive situations (yearly and daily), using the persistence model as benchmark. The evaluations of predictive performances, regarding both the analyses, confirmed the superiority of data-driven approaches in the daily wind power prediction. More in detail, the hybrid model managed to reduce the MAE, the NRMSE and the SS values, compared to persistence, by 50%, 47.82% and 47.68%, respectively.

Suggested Citation

  • Ogliari, Emanuele & Guilizzoni, Manfredo & Giglio, Alessandro & Pretto, Silvia, 2021. "Wind power 24-h ahead forecast by an artificial neural network and an hybrid model: Comparison of the predictive performance," Renewable Energy, Elsevier, vol. 178(C), pages 1466-1474.
  • Handle: RePEc:eee:renene:v:178:y:2021:i:c:p:1466-1474
    DOI: 10.1016/j.renene.2021.06.108
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148121009745
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2021.06.108?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hyndman, Rob J. & Koehler, Anne B., 2006. "Another look at measures of forecast accuracy," International Journal of Forecasting, Elsevier, vol. 22(4), pages 679-688.
    2. Nielson, Jordan & Bhaganagar, Kiran & Meka, Rajitha & Alaeddini, Adel, 2020. "Using atmospheric inputs for Artificial Neural Networks to improve wind turbine power prediction," Energy, Elsevier, vol. 190(C).
    3. Wang, Gang & Jia, Ru & Liu, Jinhai & Zhang, Huaguang, 2020. "A hybrid wind power forecasting approach based on Bayesian model averaging and ensemble learning," Renewable Energy, Elsevier, vol. 145(C), pages 2426-2434.
    4. Xu, Wenhao & Li, Ye & Li, Gaohua & Li, Shoutu & Zhang, Chen & Wang, Fuxin, 2021. "High-resolution numerical simulation of the performance of vertical axis wind turbines in urban area: Part II, array of vertical axis wind turbines between buildings," Renewable Energy, Elsevier, vol. 176(C), pages 25-39.
    5. Ciulla, G. & D’Amico, A. & Di Dio, V. & Lo Brano, V., 2019. "Modelling and analysis of real-world wind turbine power curves: Assessing deviations from nominal curve by neural networks," Renewable Energy, Elsevier, vol. 140(C), pages 477-492.
    6. Franses, Philip Hans, 2016. "A note on the Mean Absolute Scaled Error," International Journal of Forecasting, Elsevier, vol. 32(1), pages 20-22.
    7. Jin, Huaiping & Shi, Lixian & Chen, Xiangguang & Qian, Bin & Yang, Biao & Jin, Huaikang, 2021. "Probabilistic wind power forecasting using selective ensemble of finite mixture Gaussian process regression models," Renewable Energy, Elsevier, vol. 174(C), pages 1-18.
    8. Foley, Aoife M. & Leahy, Paul G. & Marvuglia, Antonino & McKeogh, Eamon J., 2012. "Current methods and advances in forecasting of wind power generation," Renewable Energy, Elsevier, vol. 37(1), pages 1-8.
    9. Xu, Wenhao & Li, Gaohua & Zheng, Xiaobo & Li, Ye & Li, Shoutu & Zhang, Chen & Wang, Fuxin, 2021. "High-resolution numerical simulation of the performance of vertical axis wind turbines in urban area: Part I, wind turbines on the side of single building," Renewable Energy, Elsevier, vol. 177(C), pages 461-474.
    10. Liu, Luoqin & Stevens, Richard J.A.M., 2021. "Effects of atmospheric stability on the performance of a wind turbine located behind a three-dimensional hill," Renewable Energy, Elsevier, vol. 175(C), pages 926-935.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Qu, Hai & Li, Chengying & Chen, Xiangjun & Liu, Xu & Guo, Ruichang & Liu, Ying, 2023. "LN cooling on mechanical properties and fracture characteristics of hot dry granites involving ANN prediction," Renewable Energy, Elsevier, vol. 216(C).
    2. Hu, Yusha & Li, Jigeng & Hong, Mengna & Ren, Jingzheng & Man, Yi, 2022. "Industrial artificial intelligence based energy management system: Integrated framework for electricity load forecasting and fault prediction," Energy, Elsevier, vol. 244(PB).
    3. Han, Yixiao & Liao, Yanfen & Ma, Xiaoqian & Guo, Xing & Li, Changxin & Liu, Xinyu, 2023. "Analysis and prediction of the penetration of renewable energy in power systems using artificial neural network," Renewable Energy, Elsevier, vol. 215(C).
    4. Oliveira, Augusto Cesar Laviola de & Renato, Natalia dos Santos & Martins, Marcio Arêdes & Mendonça, Isabela Miranda de & Moraes, Camile Arêdes & Lago, Lucas Fernandes Rocha, 2023. "Renewable energy solutions based on artificial intelligence for farms in the state of Minas Gerais, Brazil: Analysis and proposition," Renewable Energy, Elsevier, vol. 204(C), pages 24-38.
    5. Liu, Ling & Wang, Jujie & Li, Jianping & Wei, Lu, 2023. "An online transfer learning model for wind turbine power prediction based on spatial feature construction and system-wide update," Applied Energy, Elsevier, vol. 340(C).
    6. Jing Wan & Jiehui Huang & Zhiyuan Liao & Chunquan Li & Peter X. Liu, 2022. "A Multi-View Ensemble Width-Depth Neural Network for Short-Term Wind Power Forecasting," Mathematics, MDPI, vol. 10(11), pages 1-20, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Santamaría-Bonfil, G. & Reyes-Ballesteros, A. & Gershenson, C., 2016. "Wind speed forecasting for wind farms: A method based on support vector regression," Renewable Energy, Elsevier, vol. 85(C), pages 790-809.
    2. Wasilewski, J. & Baczynski, D., 2017. "Short-term electric energy production forecasting at wind power plants in pareto-optimality context," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 177-187.
    3. Li, Shoutu & Chen, Qin & Li, Ye & Pröbsting, Stefan & Yang, Congxin & Zheng, Xiaobo & Yang, Yannian & Zhu, Weijun & Shen, Wenzhong & Wu, Faming & Li, Deshun & Wang, Tongguang & Ke, Shitang, 2022. "Experimental investigation on noise characteristics of small scale vertical axis wind turbines in urban environments," Renewable Energy, Elsevier, vol. 200(C), pages 970-982.
    4. Drachal, Krzysztof, 2021. "Forecasting crude oil real prices with averaging time-varying VAR models," Resources Policy, Elsevier, vol. 74(C).
    5. Dar, Arslan Salim & Armengol Barcos, Guillem & Porté-Agel, Fernando, 2022. "An experimental investigation of a roof-mounted horizontal-axis wind turbine in an idealized urban environment," Renewable Energy, Elsevier, vol. 193(C), pages 1049-1061.
    6. Zhang, Lijun & Li, Ye & Xu, Wenhao & Gao, Zhiteng & Fang, Long & Li, Rongfu & Ding, Boyin & Zhao, Bin & Leng, Jun & He, Fenglan, 2022. "Systematic analysis of performance and cost of two floating offshore wind turbines with significant interactions," Applied Energy, Elsevier, vol. 321(C).
    7. Julio Barzola-Monteses & Mónica Mite-León & Mayken Espinoza-Andaluz & Juan Gómez-Romero & Waldo Fajardo, 2019. "Time Series Analysis for Predicting Hydroelectric Power Production: The Ecuador Case," Sustainability, MDPI, vol. 11(23), pages 1-19, November.
    8. Makridakis, Spyros & Spiliotis, Evangelos & Assimakopoulos, Vassilios, 2020. "The M4 Competition: 100,000 time series and 61 forecasting methods," International Journal of Forecasting, Elsevier, vol. 36(1), pages 54-74.
    9. González-Sopeña, J.M. & Pakrashi, V. & Ghosh, B., 2021. "An overview of performance evaluation metrics for short-term statistical wind power forecasting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    10. Kolassa, Stephan, 2016. "Evaluating predictive count data distributions in retail sales forecasting," International Journal of Forecasting, Elsevier, vol. 32(3), pages 788-803.
    11. Miriam Steurer & Robert Hill, 2019. "Metrics for Evaluating the Performance of Automated Valuation Models," Graz Economics Papers 2019-02, University of Graz, Department of Economics.
    12. Jahanpour, Ehsan & Ko, Hoo Sang & Nof, Shimon Y., 2016. "Collaboration protocols for sustainable wind energy distribution networks," International Journal of Production Economics, Elsevier, vol. 182(C), pages 496-507.
    13. Pérez Albornoz, C. & Escalante Soberanis, M.A. & Ramírez Rivera, V. & Rivero, M., 2022. "Review of atmospheric stability estimations for wind power applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 163(C).
    14. Marta Poncela-Blanco & Pilar Poncela, 2021. "Improving Wind Power Forecasts: Combination through Multivariate Dimension Reduction Techniques," Energies, MDPI, vol. 14(5), pages 1-16, March.
    15. Rostami-Tabar, Bahman & Ziel, Florian, 2022. "Anticipating special events in Emergency Department forecasting," International Journal of Forecasting, Elsevier, vol. 38(3), pages 1197-1213.
    16. Fabrizio De Caro & Jacopo De Stefani & Gianluca Bontempi & Alfredo A. Vaccaro & Domenico D. Villacci, 2020. "Robust Assessment of Short-Term Wind Power Forecasting Models on Multiple Time Horizons," ULB Institutional Repository 2013/314435, ULB -- Universite Libre de Bruxelles.
    17. Montero-Sousa, Juan Aurelio & Aláiz-Moretón, Héctor & Quintián, Héctor & González-Ayuso, Tomás & Novais, Paulo & Calvo-Rolle, José Luis, 2020. "Hydrogen consumption prediction of a fuel cell based system with a hybrid intelligent approach," Energy, Elsevier, vol. 205(C).
    18. Gensler, André & Sick, Bernhard & Vogt, Stephan, 2018. "A review of uncertainty representations and metaverification of uncertainty assessment techniques for renewable energies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 352-379.
    19. Kang, Yanfei & Spiliotis, Evangelos & Petropoulos, Fotios & Athiniotis, Nikolaos & Li, Feng & Assimakopoulos, Vassilios, 2021. "Déjà vu: A data-centric forecasting approach through time series cross-similarity," Journal of Business Research, Elsevier, vol. 132(C), pages 719-731.
    20. Krzysztof Drachal, 2019. "Analysis of Agricultural Commodities Prices with New Bayesian Model Combination Schemes," Sustainability, MDPI, vol. 11(19), pages 1-23, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:178:y:2021:i:c:p:1466-1474. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.