IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v200y2022icp970-982.html
   My bibliography  Save this article

Experimental investigation on noise characteristics of small scale vertical axis wind turbines in urban environments

Author

Listed:
  • Li, Shoutu
  • Chen, Qin
  • Li, Ye
  • Pröbsting, Stefan
  • Yang, Congxin
  • Zheng, Xiaobo
  • Yang, Yannian
  • Zhu, Weijun
  • Shen, Wenzhong
  • Wu, Faming
  • Li, Deshun
  • Wang, Tongguang
  • Ke, Shitang

Abstract

Noise pollution from wind turbines has been receiving significant attention with the rapid increase in global wind power installation, especially in urban environments where population density is high. Several countries tried to quantify the relation between wind turbine design characteristics and noise impact levels. To date, no quantitative results have been presented, while it is believed that the vertical axis wind turbine has advantages compared to horizontal axis wind turbines in certain applications. With the purpose to enhance understanding of noise pollution caused by vertical axis wind turbines in the urban environment, a systematic experimental test campaign in an anechoic wind tunnel was conducted. The results demonstrate that low-frequency noise increasingly affects humans when the wind speed increases. The blade-passing frequency is identified as a major parameter in the generation of low-frequency noise. More importantly, the noise pollution from various designs is discussed to analyze the impacts on humans and various animals. These designs are analyzed according to national standards from different countries. It is found that an optimal design of a vertical axis wind turbine is suitable for the urban environment with minimal noise impact.

Suggested Citation

  • Li, Shoutu & Chen, Qin & Li, Ye & Pröbsting, Stefan & Yang, Congxin & Zheng, Xiaobo & Yang, Yannian & Zhu, Weijun & Shen, Wenzhong & Wu, Faming & Li, Deshun & Wang, Tongguang & Ke, Shitang, 2022. "Experimental investigation on noise characteristics of small scale vertical axis wind turbines in urban environments," Renewable Energy, Elsevier, vol. 200(C), pages 970-982.
  • Handle: RePEc:eee:renene:v:200:y:2022:i:c:p:970-982
    DOI: 10.1016/j.renene.2022.09.099
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148122014598
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2022.09.099?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Li, Ye & Willman, Lindsay, 2014. "Feasibility analysis of offshore renewables penetrating local energy systems in remote oceanic areas – A case study of emissions from an electricity system with tidal power in Southern Alaska," Applied Energy, Elsevier, vol. 117(C), pages 42-53.
    2. KC, Anup & Whale, Jonathan & Urmee, Tania, 2019. "Urban wind conditions and small wind turbines in the built environment: A review," Renewable Energy, Elsevier, vol. 131(C), pages 268-283.
    3. Abdelgalil Eltayesh & Magdy Bassily Hanna & Francesco Castellani & A.S. Huzayyin & Hesham M. El-Batsh & Massimiliano Burlando & Matteo Becchetti, 2019. "Effect of Wind Tunnel Blockage on the Performance of a Horizontal Axis Wind Turbine with Different Blade Number," Energies, MDPI, vol. 12(10), pages 1-15, May.
    4. Xu, Wenhao & Li, Ye & Li, Gaohua & Li, Shoutu & Zhang, Chen & Wang, Fuxin, 2021. "High-resolution numerical simulation of the performance of vertical axis wind turbines in urban area: Part II, array of vertical axis wind turbines between buildings," Renewable Energy, Elsevier, vol. 176(C), pages 25-39.
    5. Sun, Chengpeng & Wu, Haifeng & Wang, Ruixiang & Xing, Meibo & Tang, Wentao, 2022. "An improvement approach for the solar collector by optimizing the interface of assembling structure," Renewable Energy, Elsevier, vol. 195(C), pages 688-700.
    6. Wu, Xiawei & Hu, Weihao & Huang, Qi & Chen, Cong & Jacobson, Mark Z. & Chen, Zhe, 2020. "Optimizing the layout of onshore wind farms to minimize noise," Applied Energy, Elsevier, vol. 267(C).
    7. Zhang, Wei & Li, Ye & Wu, Xiaoni & Guo, Shihao, 2018. "Review of the applied mechanical problems in ocean thermal energy conversion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 231-244.
    8. Xu, Wenhao & Li, Gaohua & Zheng, Xiaobo & Li, Ye & Li, Shoutu & Zhang, Chen & Wang, Fuxin, 2021. "High-resolution numerical simulation of the performance of vertical axis wind turbines in urban area: Part I, wind turbines on the side of single building," Renewable Energy, Elsevier, vol. 177(C), pages 461-474.
    9. Santos, L. & Dahi Taleghani, A. & Elsworth, D., 2022. "Repurposing abandoned wells for geothermal energy: Current status and future prospects," Renewable Energy, Elsevier, vol. 194(C), pages 1288-1302.
    10. Barnes, Andrew & Hughes, Ben, 2019. "Determining the impact of VAWT farm configurations on power output," Renewable Energy, Elsevier, vol. 143(C), pages 1111-1120.
    11. Yu, Shiwei & Zheng, Yali & Hu, Xing & Shu, Kesheng, 2022. "Spatial impacts of biomass resource endowment on provincial green development efficiency," Renewable Energy, Elsevier, vol. 189(C), pages 651-662.
    12. Su, Jie & Lei, Hang & Zhou, Dai & Han, Zhaolong & Bao, Yan & Zhu, Hongbo & Zhou, Lei, 2019. "Aerodynamic noise assessment for a vertical axis wind turbine using Improved Delayed Detached Eddy Simulation," Renewable Energy, Elsevier, vol. 141(C), pages 559-569.
    13. Dai, Juchuan & Li, Mimi & Chen, Huanguo & He, Tao & Zhang, Fan, 2022. "Progress and challenges on blade load research of large-scale wind turbines," Renewable Energy, Elsevier, vol. 196(C), pages 482-496.
    14. Taylor, Jennifer & Eastwick, Carol & Lawrence, Claire & Wilson, Robin, 2013. "Noise levels and noise perception from small and micro wind turbines," Renewable Energy, Elsevier, vol. 55(C), pages 120-127.
    15. Mohamed, M.H., 2014. "Aero-acoustics noise evaluation of H-rotor Darrieus wind turbines," Energy, Elsevier, vol. 65(C), pages 596-604.
    16. Shen, Wen Zhong & Zhu, Wei Jun & Barlas, Emre & Li, Ye, 2019. "Advanced flow and noise simulation method for wind farm assessment in complex terrain," Renewable Energy, Elsevier, vol. 143(C), pages 1812-1825.
    17. Dessoky, Amgad & Lutz, Thorsten & Bangga, Galih & Krämer, Ewald, 2019. "Computational studies on Darrieus VAWT noise mechanisms employing a high order DDES model," Renewable Energy, Elsevier, vol. 143(C), pages 404-425.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gyatso, Ngawang & Li, Ye & Gao, Zhiteng & Wang, Qiang & Li, Shoutu & Yin, Qiang & Chen, Junbo & Jin, Peng & Liu, Zhengshu & Ma, Zengyi & Chen, Xuefeng & Feng, Jiajia & Dorje,, 2023. "Wind power performance assessment at high plateau region: A case study of the wind farm field test on the Qinghai-Tibet plateau," Applied Energy, Elsevier, vol. 336(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Lijun & Li, Ye & Xu, Wenhao & Gao, Zhiteng & Fang, Long & Li, Rongfu & Ding, Boyin & Zhao, Bin & Leng, Jun & He, Fenglan, 2022. "Systematic analysis of performance and cost of two floating offshore wind turbines with significant interactions," Applied Energy, Elsevier, vol. 321(C).
    2. Meng, Fantai & Sergiienko, Nataliia & Ding, Boyin & Zhou, Binzhen & Silva, Leandro Souza Pinheiro Da & Cazzolato, Benjamin & Li, Ye, 2023. "Co-located offshore wind–wave energy systems: Can motion suppression and reliable power generation be achieved simultaneously?," Applied Energy, Elsevier, vol. 331(C).
    3. Isabel Cristina Gil-García & María Socorro García-Cascales & Angel Molina-García, 2022. "Urban Wind: An Alternative for Sustainable Cities," Energies, MDPI, vol. 15(13), pages 1-20, June.
    4. Manuel Viqueira-Moreira & Esteban Ferrer, 2020. "Insights into the Aeroacoustic Noise Generation for Vertical Axis Turbines in Close Proximity," Energies, MDPI, vol. 13(16), pages 1-18, August.
    5. Xu, Wenhao & Li, Gaohua & Zheng, Xiaobo & Li, Ye & Li, Shoutu & Zhang, Chen & Wang, Fuxin, 2021. "High-resolution numerical simulation of the performance of vertical axis wind turbines in urban area: Part I, wind turbines on the side of single building," Renewable Energy, Elsevier, vol. 177(C), pages 461-474.
    6. Cao, Jiufa & Nyborg, Camilla Marie & Feng, Ju & Hansen, Kurt S. & Bertagnolio, Franck & Fischer, Andreas & Sørensen, Thomas & Shen, Wen Zhong, 2022. "A new multi-fidelity flow-acoustics simulation framework for wind farm application," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    7. Dar, Arslan Salim & Armengol Barcos, Guillem & Porté-Agel, Fernando, 2022. "An experimental investigation of a roof-mounted horizontal-axis wind turbine in an idealized urban environment," Renewable Energy, Elsevier, vol. 193(C), pages 1049-1061.
    8. Daniel Micallef & Gerard Van Bussel, 2018. "A Review of Urban Wind Energy Research: Aerodynamics and Other Challenges," Energies, MDPI, vol. 11(9), pages 1-27, August.
    9. Barnes, Andrew & Marshall-Cross, Daniel & Hughes, Ben Richard, 2021. "Towards a standard approach for future Vertical Axis Wind Turbine aerodynamics research and development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    10. Monjardín-Gámez, José de Jesús & Campos-Amezcua, Rafael & Gómez-Martínez, Roberto & Sánchez-García, Raúl & Campos-Amezcua, Alfonso & Trujillo-Franco, Luis G. & Abundis-Fong, Hugo F., 2023. "Large eddy simulation and experimental study of the turbulence on wind turbines," Energy, Elsevier, vol. 273(C).
    11. Xu, Wenhao & Li, Ye & Li, Gaohua & Li, Shoutu & Zhang, Chen & Wang, Fuxin, 2021. "High-resolution numerical simulation of the performance of vertical axis wind turbines in urban area: Part II, array of vertical axis wind turbines between buildings," Renewable Energy, Elsevier, vol. 176(C), pages 25-39.
    12. Li, Gang & Li, Yidian & Li, Jia & Huang, Huilan & Huang, Liyan, 2023. "Research on dynamic characteristics of vertical axis wind turbine extended to the outside of buildings," Energy, Elsevier, vol. 272(C).
    13. José R. Dorrego & Armando Ríos & Quetzalcoatl Hernandez-Escobedo & Rafael Campos-Amezcua & Reynaldo Iracheta & Orlando Lastres & Pascual López & Antonio Verde & Liliana Hechavarria & Miguel-Angel Pere, 2021. "Theoretical and Experimental Analysis of Aerodynamic Noise in Small Wind Turbines," Energies, MDPI, vol. 14(3), pages 1-21, January.
    14. Ogliari, Emanuele & Guilizzoni, Manfredo & Giglio, Alessandro & Pretto, Silvia, 2021. "Wind power 24-h ahead forecast by an artificial neural network and an hybrid model: Comparison of the predictive performance," Renewable Energy, Elsevier, vol. 178(C), pages 1466-1474.
    15. Luca Salvadori & Annalisa Di Bernardino & Giorgio Querzoli & Simone Ferrari, 2021. "A Novel Automatic Method for the Urban Canyon Parametrization Needed by Turbulence Numerical Simulations for Wind Energy Potential Assessment," Energies, MDPI, vol. 14(16), pages 1-22, August.
    16. Belabes, Belkacem & Paraschivoiu, Marius, 2021. "Numerical study of the effect of turbulence intensity on VAWT performance," Energy, Elsevier, vol. 233(C).
    17. Mohamed, M.H., 2016. "Reduction of the generated aero-acoustics noise of a vertical axis wind turbine using CFD (Computational Fluid Dynamics) techniques," Energy, Elsevier, vol. 96(C), pages 531-544.
    18. Jessica Guadalupe Tobal-Cupul & Erika Paola Garduño-Ruiz & Emiliano Gorr-Pozzi & Jorge Olmedo-González & Emily Diane Martínez & Andrés Rosales & Dulce Daniela Navarro-Moreno & Jonathan Emmanuel Beníte, 2022. "An Assessment of the Financial Feasibility of an OTEC Ecopark: A Case Study at Cozumel Island," Sustainability, MDPI, vol. 14(8), pages 1-28, April.
    19. Cao, Lichao & Ge, Mingwei & Gao, Xiaoxia & Du, Bowen & Li, Baoliang & Huang, Zhi & Liu, Yongqian, 2022. "Wind farm layout optimization to minimize the wake induced turbulence effect on wind turbines," Applied Energy, Elsevier, vol. 323(C).
    20. Balduzzi, Francesco & Bianchini, Alessandro & Ferrara, Giovanni & Ferrari, Lorenzo, 2016. "Dimensionless numbers for the assessment of mesh and timestep requirements in CFD simulations of Darrieus wind turbines," Energy, Elsevier, vol. 97(C), pages 246-261.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:200:y:2022:i:c:p:970-982. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.