IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i8p4654-d793126.html
   My bibliography  Save this article

An Assessment of the Financial Feasibility of an OTEC Ecopark: A Case Study at Cozumel Island

Author

Listed:
  • Jessica Guadalupe Tobal-Cupul

    (Department of Basic Sciences and Engineering, Universidad del Caribe, Cancun 77528, Mexico)

  • Erika Paola Garduño-Ruiz

    (Instituto de Ingeniería, Ciudad Universitaria, Circuito Exterior S/N, Coyoacán, Mexico City 04510, Mexico)

  • Emiliano Gorr-Pozzi

    (Instituto de Investigaciones Oceanológicas, Universidad Autónoma de Baja California, Ensenada 22870, Mexico)

  • Jorge Olmedo-González

    (Laboratorio de Electroquímica, Instituto Politécnico Nacional-ESIQIE, UPALM, GAM, Mexico City 07738, Mexico)

  • Emily Diane Martínez

    (Thayer School of Engineering at Dartmouth, Hanover, NH 03755, USA)

  • Andrés Rosales

    (Thayer School of Engineering at Dartmouth, Hanover, NH 03755, USA)

  • Dulce Daniela Navarro-Moreno

    (Instituto de Ingeniería, Ciudad Universitaria, Circuito Exterior S/N, Coyoacán, Mexico City 04510, Mexico)

  • Jonathan Emmanuel Benítez-Gallardo

    (Instituto de Ingeniería, Ciudad Universitaria, Circuito Exterior S/N, Coyoacán, Mexico City 04510, Mexico)

  • Fabiola García-Vega

    (Instituto de Ingeniería, Ciudad Universitaria, Circuito Exterior S/N, Coyoacán, Mexico City 04510, Mexico)

  • Michelle Wang

    (Thayer School of Engineering at Dartmouth, Hanover, NH 03755, USA)

  • Santiago Zamora-Castillo

    (Dartmouth College, Hanover, NH 03755, USA)

  • Yandy Rodríguez-Cueto

    (Instituto de Ingeniería, Ciudad Universitaria, Circuito Exterior S/N, Coyoacán, Mexico City 04510, Mexico)

  • Graciela Rivera

    (Instituto de Ingeniería, Ciudad Universitaria, Circuito Exterior S/N, Coyoacán, Mexico City 04510, Mexico)

  • Alejandro García-Huante

    (Instituto de Ingeniería, Ciudad Universitaria, Circuito Exterior S/N, Coyoacán, Mexico City 04510, Mexico)

  • José A. Zertuche-González

    (Instituto de Investigaciones Oceanológicas, Universidad Autónoma de Baja California, Ensenada 22870, Mexico)

  • Estela Cerezo-Acevedo

    (Department of Basic Sciences and Engineering, Universidad del Caribe, Cancun 77528, Mexico)

  • Rodolfo Silva

    (Instituto de Ingeniería, Ciudad Universitaria, Circuito Exterior S/N, Coyoacán, Mexico City 04510, Mexico)

Abstract

The aim of this article is to show how an OTEC Ecopark could provide comprehensive, sustainable, and quality products that satisfy the diverse needs of coastal communities in Mexico. An offshore 60 MW hybrid Ocean Thermal Energy Conversion (OTEC) plant is proposed, which will provide products that will not only fulfill the water, energy, and food needs of the coastal communities, but also energize the local blue economy. An assessment of the financial feasibility of the plant as well as a comparative analysis against other forms of energy generation was carried out. The methodology section includes a market description, literature review for the technical design, methods for mitigating socio-environmental risks, and an analysis of operational risks. To determine financial feasibility, the CAPEX, OPEX and annual revenue, including the sale of CELs and carbon credits, were evaluated. The Internal Rate of Return suggests that the system would pay for itself in year 5 of the system’s 30-year life. The methodology used for this case study, with site-specific adaptations, can be applied to other coastal communities across the globe.

Suggested Citation

  • Jessica Guadalupe Tobal-Cupul & Erika Paola Garduño-Ruiz & Emiliano Gorr-Pozzi & Jorge Olmedo-González & Emily Diane Martínez & Andrés Rosales & Dulce Daniela Navarro-Moreno & Jonathan Emmanuel Beníte, 2022. "An Assessment of the Financial Feasibility of an OTEC Ecopark: A Case Study at Cozumel Island," Sustainability, MDPI, vol. 14(8), pages 1-28, April.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:8:p:4654-:d:793126
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/8/4654/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/8/4654/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Li, Ye & Willman, Lindsay, 2014. "Feasibility analysis of offshore renewables penetrating local energy systems in remote oceanic areas – A case study of emissions from an electricity system with tidal power in Southern Alaska," Applied Energy, Elsevier, vol. 117(C), pages 42-53.
    2. Jessica Guadalupe Tobal-Cupul & Estela Cerezo-Acevedo & Yair Yosias Arriola-Gil & Hector Fernando Gomez-Garcia & Victor Manuel Romero-Medina, 2021. "Sensitivity Analysis of OTEC-CC-MX-1 kWe Plant Prototype," Energies, MDPI, vol. 14(9), pages 1-17, April.
    3. Zhang, Wei & Li, Ye & Wu, Xiaoni & Guo, Shihao, 2018. "Review of the applied mechanical problems in ocean thermal energy conversion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 231-244.
    4. Osorio, Andrés F. & Arias-Gaviria, Jessica & Devis-Morales, Andrea & Acevedo, Diego & Velasquez, Héctor Iván & Arango-Aramburo, Santiago, 2016. "Beyond electricity: The potential of ocean thermal energy and ocean technology ecoparks in small tropical islands," Energy Policy, Elsevier, vol. 98(C), pages 713-724.
    5. Bernardoni, C. & Binotti, M. & Giostri, A., 2019. "Techno-economic analysis of closed OTEC cycles for power generation," Renewable Energy, Elsevier, vol. 132(C), pages 1018-1033.
    6. Khan, N. & Kalair, A. & Abas, N. & Haider, A., 2017. "Review of ocean tidal, wave and thermal energy technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 590-604.
    7. Juan Francisco Barcenas Graniel & Enrique Celestino Carrera Chan & Maria Fernanda Sabido Tun & Estela Cerezo-Acevedo, 2020. "Environmental Impact Assessment of the Operation of an Open Cycle OTEC 1MWe Power Plant in the Cozumel Island, Mexico," Chapters, in: Albert S. Kim & Hyeon-Ju Kim (ed.), Ocean Thermal Energy Conversion (OTEC) - Past, Present, and Progress, IntechOpen.
    8. Etzaguery Marin-Coria & Rodolfo Silva & Cecilia Enriquez & M. Luisa Martínez & Edgar Mendoza, 2021. "Environmental Assessment of the Impacts and Benefits of a Salinity Gradient Energy Pilot Plant," Energies, MDPI, vol. 14(11), pages 1-24, June.
    9. Martínez, M.L. & Vázquez, G. & Pérez-Maqueo, O. & Silva, R. & Moreno-Casasola, P. & Mendoza-González, G. & López-Portillo, J. & MacGregor-Fors, I. & Heckel, G. & Hernández-Santana, J.R. & García-Franc, 2021. "A systemic view of potential environmental impacts of ocean energy production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    10. Erika Paola Garduño-Ruiz & Rodolfo Silva & Yandy Rodríguez-Cueto & Alejandro García-Huante & Jorge Olmedo-González & M. Luisa Martínez & Astrid Wojtarowski & Raúl Martell-Dubois & Sergio Cerdeira-Estr, 2021. "Criteria for Optimal Site Selection for Ocean Thermal Energy Conversion (OTEC) Plants in Mexico," Energies, MDPI, vol. 14(8), pages 1-23, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Erika Paola Garduño-Ruiz & Rodolfo Silva & Yandy Rodríguez-Cueto & Alejandro García-Huante & Jorge Olmedo-González & M. Luisa Martínez & Astrid Wojtarowski & Raúl Martell-Dubois & Sergio Cerdeira-Estr, 2021. "Criteria for Optimal Site Selection for Ocean Thermal Energy Conversion (OTEC) Plants in Mexico," Energies, MDPI, vol. 14(8), pages 1-23, April.
    2. Wang, Guohui & Yang, Yanan & Wang, Shuxin & Zhang, Hongwei & Wang, Yanhui, 2019. "Efficiency analysis and experimental validation of the ocean thermal energy conversion with phase change material for underwater vehicle," Applied Energy, Elsevier, vol. 248(C), pages 475-488.
    3. Arias-Gaviria, Jessica & Osorio, Andres F. & Arango-Aramburo, Santiago, 2020. "Estimating the practical potential for deep ocean water extraction in the Caribbean," Renewable Energy, Elsevier, vol. 150(C), pages 307-319.
    4. Li, Shoutu & Chen, Qin & Li, Ye & Pröbsting, Stefan & Yang, Congxin & Zheng, Xiaobo & Yang, Yannian & Zhu, Weijun & Shen, Wenzhong & Wu, Faming & Li, Deshun & Wang, Tongguang & Ke, Shitang, 2022. "Experimental investigation on noise characteristics of small scale vertical axis wind turbines in urban environments," Renewable Energy, Elsevier, vol. 200(C), pages 970-982.
    5. Zhang, Lijun & Li, Ye & Xu, Wenhao & Gao, Zhiteng & Fang, Long & Li, Rongfu & Ding, Boyin & Zhao, Bin & Leng, Jun & He, Fenglan, 2022. "Systematic analysis of performance and cost of two floating offshore wind turbines with significant interactions," Applied Energy, Elsevier, vol. 321(C).
    6. Langer, Jannis & Infante Ferreira, Carlos & Quist, Jaco, 2022. "Is bigger always better? Designing economically feasible ocean thermal energy conversion systems using spatiotemporal resource data," Applied Energy, Elsevier, vol. 309(C).
    7. Hu, Huakun & Xue, Wendong & Jiang, Peng & Li, Yong, 2022. "Bibliometric analysis for ocean renewable energy: An comprehensive review for hotspots, frontiers, and emerging trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    8. Zhang, Zhixiang & Yuan, Han & Mei, Ning, 2023. "Theoretical analysis on extraction-ejection combined power and refrigeration cycle for ocean thermal energy conversion," Energy, Elsevier, vol. 273(C).
    9. Langer, Jannis & Quist, Jaco & Blok, Kornelis, 2022. "Upscaling scenarios for ocean thermal energy conversion with technological learning in Indonesia and their global relevance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    10. Langer, Jannis & Quist, Jaco & Blok, Kornelis, 2020. "Recent progress in the economics of ocean thermal energy conversion: Critical review and research agenda," Renewable and Sustainable Energy Reviews, Elsevier, vol. 130(C).
    11. Yang, Min-Hsiung & Yeh, Rong-Hua, 2022. "Investigation of the potential of R717 blends as working fluids in the organic Rankine cycle (ORC) for ocean thermal energy conversion (OTEC)," Energy, Elsevier, vol. 245(C).
    12. Hu, Zheng & Wan, Yueru & Zhang, Chengbin & Chen, Yongping, 2022. "Compression-assisted absorption refrigeration using ocean thermal energy," Renewable Energy, Elsevier, vol. 186(C), pages 755-768.
    13. Meng, Fantai & Sergiienko, Nataliia & Ding, Boyin & Zhou, Binzhen & Silva, Leandro Souza Pinheiro Da & Cazzolato, Benjamin & Li, Ye, 2023. "Co-located offshore wind–wave energy systems: Can motion suppression and reliable power generation be achieved simultaneously?," Applied Energy, Elsevier, vol. 331(C).
    14. Albert S. Kim, 2022. "Special Issue “Selected Papers from the 8th International OTEC Symposium”," Energies, MDPI, vol. 15(3), pages 1-2, January.
    15. Jahangir, Mohammad Hossein & Hosseini, Seyed Sina & Mehrpooya, Mehdi, 2018. "A detailed theoretical modeling and parametric investigation of potential power in heaving buoys," Energy, Elsevier, vol. 154(C), pages 201-209.
    16. Zarzuelo, Carmen & López-Ruiz, Alejandro & Ortega-Sánchez, Miguel, 2018. "Impact of human interventions on tidal stream power: The case of Cádiz Bay," Energy, Elsevier, vol. 145(C), pages 88-104.
    17. Qian, Peng & Feng, Bo & Liu, Hao & Tian, Xiange & Si, Yulin & Zhang, Dahai, 2019. "Review on configuration and control methods of tidal current turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 108(C), pages 125-139.
    18. López, A. & Morán, J.L. & Núñez, L.R. & Somolinos, J.A., 2020. "Study of a cost model of tidal energy farms in early design phases with parametrization and numerical values. Application to a second-generation device," Renewable and Sustainable Energy Reviews, Elsevier, vol. 117(C).
    19. Wu, Zhixiang & Feng, Huijun & Chen, Lingen & Xie, Zhuojun & Cai, Cunguang, 2019. "Pumping power minimization of an evaporator in ocean thermal energy conversion system based on constructal theory," Energy, Elsevier, vol. 181(C), pages 974-984.
    20. Wenbin Su & Hongbo Wei & Penghua Guo & Ruizhe Guo, 2021. "Remote Monitoring and Fault Diagnosis of Ocean Current Energy Hydraulic Transmission and Control Power Generation System," Energies, MDPI, vol. 14(13), pages 1-18, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:8:p:4654-:d:793126. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.