IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v316y2025ics0360544225002336.html
   My bibliography  Save this article

Numerical modelling and performance analysis of closed ocean thermal energy conversion cycles in the South China sea

Author

Listed:
  • Chang, Shoujin
  • Lei, Rui
  • He, Jiaxin
  • Li, Xuan
  • Li, Yuhan
  • Hu, Haitao

Abstract

The performance of ocean thermal energy conversion (OTEC) systems in the South China Sea differs significantly due to its relatively low surface seawater temperature, and the influence mechanisms remain unclear. In the present study, numerical models for OTEC systems were developed for Rankine, Kalina, and Uehara OTEC cycles, and a distributed parameter model and a mass flow rate distribution model for parallel PHEs were utilized to accurately evaluate the effects of heat transfer and pressure drop characteristics on overall cycle performance. The influences of operation conditions on performance of various OTEC systems in the South China Sea were analyzed. Results indicate that, under equivalent operating conditions, the low surface temperature in the South China Sea reduces thermal efficiency by 13.29 % compared to other regions. To achieve comparable efficiency levels, the condensation temperature must decrease by at least 3 °C. The Rankine cycle achieves maximally 64 % higher thermal efficiency than the Kalina and Uehara cycles, while the Uehara cycle exhibits 8.38 % and 22.02 % higher net power generation efficiency compared to the Kalina and Rankine cycles, respectively. Decreasing the temperature differences between the seawater inlet and outlet for both the evaporator and condenser improves thermal efficiency, but overly small temperature differences cause significant pressure drops of the heat exchangers. The minimum pressure drop is observed when the temperature difference is between 3 and 5 °C. To maximize net power generation efficiency, a balance between heat transfer efficiency and pressure drop must be maintained. The optimal temperature changes for power generation are 4.5 °C for the Rankine cycle and 5.5 °C for the Kalina and Uehara cycles. To ensure positive annual power generation efficiency under seasonal variations in the South China Sea, the Uehara cycle combined with cold seawater temperature of 3–4 °C is recommended. The findings provide valuable insights into the design and operation of OTEC systems, leading to potential energy and environmental advantages.

Suggested Citation

  • Chang, Shoujin & Lei, Rui & He, Jiaxin & Li, Xuan & Li, Yuhan & Hu, Haitao, 2025. "Numerical modelling and performance analysis of closed ocean thermal energy conversion cycles in the South China sea," Energy, Elsevier, vol. 316(C).
  • Handle: RePEc:eee:energy:v:316:y:2025:i:c:s0360544225002336
    DOI: 10.1016/j.energy.2025.134591
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544225002336
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2025.134591?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yang, Min-Hsiung & Yeh, Rong-Hua, 2014. "Analysis of optimization in an OTEC plant using organic Rankine cycle," Renewable Energy, Elsevier, vol. 68(C), pages 25-34.
    2. Yang, Min-Hsiung & Yeh, Rong-Hua, 2022. "Investigation of the potential of R717 blends as working fluids in the organic Rankine cycle (ORC) for ocean thermal energy conversion (OTEC)," Energy, Elsevier, vol. 245(C).
    3. Semmari, Hamza & Stitou, Driss & Mauran, Sylvain, 2012. "A novel Carnot-based cycle for ocean thermal energy conversion," Energy, Elsevier, vol. 43(1), pages 361-375.
    4. Liu, Weimin & Xu, Xiaojian & Chen, Fengyun & Liu, Yanjun & Li, Shizhen & Liu, Lei & Chen, Yun, 2020. "A review of research on the closed thermodynamic cycles of ocean thermal energy conversion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    5. Jung, Hoon & Hwang, Jungho, 2014. "Feasibility study of a combined Ocean Thermal Energy Conversion method in South Korea," Energy, Elsevier, vol. 75(C), pages 443-452.
    6. Xiao, Chenglong & Hu, Zheng & Chen, Yongping & Zhang, Chengbin, 2024. "Thermodynamic, economic, exergoeconomic analysis of an integrated ocean thermal energy conversion system," Renewable Energy, Elsevier, vol. 225(C).
    7. Li, Xiang & Lepour, Dorsan & Heymann, Fabian & Maréchal, François, 2023. "Electrification and digitalization effects on sectoral energy demand and consumption: A prospective study towards 2050," Energy, Elsevier, vol. 279(C).
    8. Ma, Qingfen & Gao, Zezhou & Huang, Jie & Mahian, Omid & Feng, Xin & Lu, Hui & Wang, Shenghui & Wang, Chengpeng & Tang, Rongnian & Li, Jingru, 2023. "Thermodynamic analysis and turbine design of a 100 kW OTEC-ORC with binary non-azeotropic working fluid," Energy, Elsevier, vol. 263(PE).
    9. Aydin, Hakan & Lee, Ho-Saeng & Kim, Hyeon-Ju & Shin, Seung Kyoon & Park, Keunhan, 2014. "Off-design performance analysis of a closed-cycle ocean thermal energy conversion system with solar thermal preheating and superheating," Renewable Energy, Elsevier, vol. 72(C), pages 154-163.
    10. Chen, Fengyun & Liu, Lei & Peng, Jingping & Ge, Yunzheng & Wu, Haoyu & Liu, Weimin, 2019. "Theoretical and experimental research on the thermal performance of ocean thermal energy conversion system using the rankine cycle mode," Energy, Elsevier, vol. 183(C), pages 497-503.
    11. Bernardoni, C. & Binotti, M. & Giostri, A., 2019. "Techno-economic analysis of closed OTEC cycles for power generation," Renewable Energy, Elsevier, vol. 132(C), pages 1018-1033.
    12. Rajagopalan, Krishnakumar & Nihous, Gérard C., 2013. "Estimates of global Ocean Thermal Energy Conversion (OTEC) resources using an ocean general circulation model," Renewable Energy, Elsevier, vol. 50(C), pages 532-540.
    13. Lu, Beichen & Yu, Yanni & Tian, Mingqian & Chen, Yun & Zhang, Li & Liu, Yanjun, 2024. "Experimental study of a high-power generation platform for ocean thermal energy conversion," Energy, Elsevier, vol. 309(C).
    14. Khan, N. & Kalair, A. & Abas, N. & Haider, A., 2017. "Review of ocean tidal, wave and thermal energy technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 590-604.
    15. Khosravi, A. & Syri, Sanna & Assad, M.E.H. & Malekan, M., 2019. "Thermodynamic and economic analysis of a hybrid ocean thermal energy conversion/photovoltaic system with hydrogen-based energy storage system," Energy, Elsevier, vol. 172(C), pages 304-319.
    16. Pattanaik, Biren & Sutha, S. & Dinesh, D. & Jalihal, Purnima, 2024. "Data-driven model based adaptive feedback-feed forward control schemes for open cycle - OTEC process," Renewable Energy, Elsevier, vol. 221(C).
    17. Fan, Chengcheng & Zhang, Chengbin & Chen, Yongping, 2024. "Dynamic operation characteristics of ocean thermal energy conversion using Kalina cycle," Renewable Energy, Elsevier, vol. 231(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yang, Min-Hsiung & Yeh, Rong-Hua, 2022. "Investigation of the potential of R717 blends as working fluids in the organic Rankine cycle (ORC) for ocean thermal energy conversion (OTEC)," Energy, Elsevier, vol. 245(C).
    2. Peng, Jingping & Ge, Yunzheng & Chen, Fengyun & Liu, Lei & Wu, Haoyu & Liu, Weimin, 2022. "Theoretical and experimental study on the performance of a high-efficiency thermodynamic cycle for ocean thermal energy conversion," Renewable Energy, Elsevier, vol. 185(C), pages 734-747.
    3. Vera, D. & Baccioli, A. & Jurado, F. & Desideri, U., 2020. "Modeling and optimization of an ocean thermal energy conversion system for remote islands electrification," Renewable Energy, Elsevier, vol. 162(C), pages 1399-1414.
    4. Zhang, Zhixiang & Yuan, Han & Mei, Ning, 2023. "Theoretical analysis on extraction-ejection combined power and refrigeration cycle for ocean thermal energy conversion," Energy, Elsevier, vol. 273(C).
    5. Zhang, Yuan & Li, Yifan & Tian, Zhen & Yang, Chao & Peng, Hao & Kan, Ankang & Gao, Wenzhong, 2025. "Thermodynamic performance prediction and optimization of a 1 kW ocean thermal energy cogeneration system based on artificial neural network," Energy, Elsevier, vol. 314(C).
    6. Mao, Liangjie & Wei, Changjiang & Zeng, Song & Cai, Mingjie, 2023. "Heat transfer mechanism of cold-water pipe in ocean thermal energy conversion system," Energy, Elsevier, vol. 269(C).
    7. Huo, Erguang & Chen, Wei & Deng, Zilong & Gao, Wei & Chen, Yongping, 2023. "Thermodynamic analysis and optimization of a combined cooling and power system using ocean thermal energy and solar energy," Energy, Elsevier, vol. 278(PA).
    8. Zhou, Yibo & Gao, Wenzhong & Zhang, Yuan & Tian, Zhen & Wang, Fei & Gao, Runbo, 2024. "Experimental investigation on thermodynamic and environmental performance of a novel ocean thermal energy conversion (OTEC)-Air conditioning (AC) system," Energy, Elsevier, vol. 313(C).
    9. Liu, Weimin & Xu, Xiaojian & Chen, Fengyun & Liu, Yanjun & Li, Shizhen & Liu, Lei & Chen, Yun, 2020. "A review of research on the closed thermodynamic cycles of ocean thermal energy conversion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    10. Chen, Fengyun & Liu, Lei & Zeng, Hao & Peng, Jingping & Ge, Yunzheng & Liu, Weimin, 2024. "Theoretical and experimental study on the secondary heat recovery cycle of the mixed working fluid in ocean thermal energy conversion," Renewable Energy, Elsevier, vol. 227(C).
    11. Hu, Zheng & Chen, Yongping & Zhang, Chengbin, 2024. "Role of R717 blends in ocean thermal energy conversion organic Rankine cycle," Renewable Energy, Elsevier, vol. 221(C).
    12. Langer, Jannis & Quist, Jaco & Blok, Kornelis, 2020. "Recent progress in the economics of ocean thermal energy conversion: Critical review and research agenda," Renewable and Sustainable Energy Reviews, Elsevier, vol. 130(C).
    13. Robert J. Brecha & Katherine Schoenenberger & Masaō Ashtine & Randy Koon Koon, 2021. "Ocean Thermal Energy Conversion—Flexible Enabling Technology for Variable Renewable Energy Integration in the Caribbean," Energies, MDPI, vol. 14(8), pages 1-19, April.
    14. Guillermo Lopez & Maria de los Angeles Ortega Del Rosario & Arthur James & Humberto Alvarez, 2022. "Site Selection for Ocean Thermal Energy Conversion Plants (OTEC): A Case Study in Panama," Energies, MDPI, vol. 15(9), pages 1-24, April.
    15. Ma, Qingfen & Gao, Zezhou & Huang, Jie & Mahian, Omid & Feng, Xin & Lu, Hui & Wang, Shenghui & Wang, Chengpeng & Tang, Rongnian & Li, Jingru, 2023. "Thermodynamic analysis and turbine design of a 100 kW OTEC-ORC with binary non-azeotropic working fluid," Energy, Elsevier, vol. 263(PE).
    16. Hu, Huakun & Xue, Wendong & Jiang, Peng & Li, Yong, 2022. "Bibliometric analysis for ocean renewable energy: An comprehensive review for hotspots, frontiers, and emerging trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    17. Zhang, Wei & Li, Ye & Wu, Xiaoni & Guo, Shihao, 2018. "Review of the applied mechanical problems in ocean thermal energy conversion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 231-244.
    18. Khosravi, A. & Syri, Sanna & Assad, M.E.H. & Malekan, M., 2019. "Thermodynamic and economic analysis of a hybrid ocean thermal energy conversion/photovoltaic system with hydrogen-based energy storage system," Energy, Elsevier, vol. 172(C), pages 304-319.
    19. Hunt, Julian David & Nascimento, Andreas & Zakeri, Behnam & Barbosa, Paulo Sérgio Franco & Costalonga, Leandro, 2022. "Seawater air-conditioning and ammonia district cooling: A solution for warm coastal regions," Energy, Elsevier, vol. 254(PB).
    20. Ahmed Elkhatat & Shaheen A. Al-Muhtaseb, 2023. "Combined “Renewable Energy–Thermal Energy Storage (RE–TES)” Systems: A Review," Energies, MDPI, vol. 16(11), pages 1-46, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:316:y:2025:i:c:s0360544225002336. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.