IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v221y2024ics0960148123016713.html
   My bibliography  Save this article

Role of R717 blends in ocean thermal energy conversion organic Rankine cycle

Author

Listed:
  • Hu, Zheng
  • Chen, Yongping
  • Zhang, Chengbin

Abstract

Ammonia (R717) is widely deemed to be the potential working fluid of the ocean thermal energy conversion (OTEC) system. To further improve the performance of OTEC Rankine cycle, R717-based binary non-azeotropic blends are employed as the working fluids, where R134a and R125 are selected as the additives. The thermodynamic model as well as the cost estimation model of OTEC system is developed to demonstrate the potential of power generation. The energy, net efficiency, and Levelized cost of electricity are evaluated and examined for OTEC system employing different blends, encompassing R717/R134a and R717/R125. The results indicate that the thermodynamic and economic indexes of R717-based blends are superior to pure fluids (i.e., R134a, R125, and R717). To maximize the net power, the mass fractions of R717 are 0.1 and 0.5 for the R717/R134a and R717/R125 blends, respectively, in a 30 kW-scale OTEC system, where the net power are higher than that of the pure R717 by 134% and 87%. In addition, R717-based blends perform better in energy cost than pure fluids, with 0–67% lower Levelized cost of electricity. Especially, a large-scale OTEC power plant is more economically profitable than a small one.

Suggested Citation

  • Hu, Zheng & Chen, Yongping & Zhang, Chengbin, 2024. "Role of R717 blends in ocean thermal energy conversion organic Rankine cycle," Renewable Energy, Elsevier, vol. 221(C).
  • Handle: RePEc:eee:renene:v:221:y:2024:i:c:s0960148123016713
    DOI: 10.1016/j.renene.2023.119756
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148123016713
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2023.119756?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:221:y:2024:i:c:s0960148123016713. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.