IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v17y1992i3p275-281.html
   My bibliography  Save this article

The maximum power from a finite reservoir for a Lorentz cycle

Author

Listed:
  • Lee, Won-Yong
  • Kim, Sang-Soo

Abstract

The production of power from a heat source with finite heat-capacity rates has been studied for the Carnot and Lorentz cycles. The maximum power for the Lorentz cycle is twice that of the Carnot cycle for a given pinch-temperature difference.

Suggested Citation

  • Lee, Won-Yong & Kim, Sang-Soo, 1992. "The maximum power from a finite reservoir for a Lorentz cycle," Energy, Elsevier, vol. 17(3), pages 275-281.
  • Handle: RePEc:eee:energy:v:17:y:1992:i:3:p:275-281
    DOI: 10.1016/0360-5442(92)90055-5
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/0360544292900555
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/0360-5442(92)90055-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lecompte, S. & Huisseune, H. & van den Broek, M. & De Paepe, M., 2015. "Methodical thermodynamic analysis and regression models of organic Rankine cycle architectures for waste heat recovery," Energy, Elsevier, vol. 87(C), pages 60-76.
    2. Choi, Hong Wone & Na, Sun-Ik & Hong, Sung Bin & Chung, Yoong & Kim, Dong Kyu & Kim, Min Soo, 2021. "Optimal design of organic Rankine cycle recovering LNG cold energy with finite heat exchanger size," Energy, Elsevier, vol. 217(C).
    3. Padilla, Ricardo Vasquez & Demirkaya, Gökmen & Goswami, D. Yogi & Stefanakos, Elias & Rahman, Muhammad M., 2010. "Analysis of power and cooling cogeneration using ammonia-water mixture," Energy, Elsevier, vol. 35(12), pages 4649-4657.
    4. Lecompte, Steven & Huisseune, Henk & van den Broek, Martijn & Vanslambrouck, Bruno & De Paepe, Michel, 2015. "Review of organic Rankine cycle (ORC) architectures for waste heat recovery," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 448-461.
    5. Zhai, Huixing & An, Qingsong & Shi, Lin & Lemort, Vincent & Quoilin, Sylvain, 2016. "Categorization and analysis of heat sources for organic Rankine cycle systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 790-805.
    6. Takeshi Yasunaga & Kevin Fontaine & Yasuyuki Ikegami, 2021. "Performance Evaluation Concept for Ocean Thermal Energy Conversion toward Standardization and Intelligent Design," Energies, MDPI, vol. 14(8), pages 1-12, April.
    7. Muhammed Zafar Ali Khan & Haider Ali Khan & Muhammad Aziz, 2022. "Harvesting Energy from Ocean: Technologies and Perspectives," Energies, MDPI, vol. 15(9), pages 1-43, May.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:17:y:1992:i:3:p:275-281. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.