IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v202y2023icp17-39.html
   My bibliography  Save this article

Thermodynamic and exergoeconomic optimization of a novel cooling, desalination and power multigeneration system based on ocean thermal energy

Author

Listed:
  • Geng, Donghan
  • Gao, Xiangjie

Abstract

For isolated islands and remote coastal and offshore areas, a multi-generation system based on ocean thermal energy conversion (OTEC) is one promising solution for electricity and water supply since it can exploit seawater resource and ocean thermal energy (OTE) simultaneously. In order to further improve the energy utilization efficiency, this paper proposes a novel combined cooling, desalination and power (CCDP) system consisting of open-OTEC cycle, dual-Kalina cycle, ejector refrigeration cycle (ERC) and reverse osmosis (RO) desalination. The integration of RO with OTEC can produce fresh water efficiently. A dual-pressure parallel Kalina cycle is introduced to utilize the ocean thermal energy in a stepwise manner. The adoption of an ejector can improve the power output. In addition, ERC is used to recover the exhausted heat from the turbine of the Kalina cycle. A detailed mathematical model is established, and a comparison with the stand-alone Kalina system under the same heat source conditions proves that the proposed CCDP system is more advantageous in terms of net power output, thermal efficiency and exergy efficiency. A parametric analysis is carried out with an emphasis on the effects of key parameters on the thermodynamic and exergoeconomic performance. Finally, a multi-objective optimization is executed based on non-dominated sorting genetic algorithm-II (NSGA-II). For the ammonia concentration of the basic solution, with the terminal temperature difference of vapor generator 2 and heat exchanger within the investigated range, there exist optimum values which can maximize the thermal and exergy efficiency and minimize SUCP simultaneously. Meanwhile, for the other five parameters, namely generation pressure 1 and 2, flash pressure1, the terminal temperature difference of vapor generator 1 and the evaporation temperature, there are trade-offs among the three performance indicators. The results suggest that the thermal efficiency (49.32%), exergy efficiency (50.08%) and SUCP (215.37 $/GJ) of the preferred optimal solution are improved by 7.43%, 9.87%, and 12.12%, respectively.

Suggested Citation

  • Geng, Donghan & Gao, Xiangjie, 2023. "Thermodynamic and exergoeconomic optimization of a novel cooling, desalination and power multigeneration system based on ocean thermal energy," Renewable Energy, Elsevier, vol. 202(C), pages 17-39.
  • Handle: RePEc:eee:renene:v:202:y:2023:i:c:p:17-39
    DOI: 10.1016/j.renene.2022.11.088
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148122017281
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2022.11.088?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yin, Jiqiang & Yu, Zeting & Zhang, Chenghui & Tian, Minli & Han, Jitian, 2018. "Thermodynamic analysis of a novel combined cooling and power system driven by low-grade heat sources," Energy, Elsevier, vol. 156(C), pages 319-327.
    2. Yari, Mortaza, 2010. "Exergetic analysis of various types of geothermal power plants," Renewable Energy, Elsevier, vol. 35(1), pages 112-121.
    3. Du, Yang & Dai, Yiping, 2018. "Off-design performance analysis of a power-cooling cogeneration system combining a Kalina cycle with an ejector refrigeration cycle," Energy, Elsevier, vol. 161(C), pages 233-250.
    4. Liu, Weimin & Xu, Xiaojian & Chen, Fengyun & Liu, Yanjun & Li, Shizhen & Liu, Lei & Chen, Yun, 2020. "A review of research on the closed thermodynamic cycles of ocean thermal energy conversion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    5. Hussain, Akhtar & Arif, Syed Muhammad & Aslam, Muhammad, 2017. "Emerging renewable and sustainable energy technologies: State of the art," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 12-28.
    6. Li, Xinguo & Zhang, Qilin & Li, Xiajie, 2013. "A Kalina cycle with ejector," Energy, Elsevier, vol. 54(C), pages 212-219.
    7. Nafey, A.S. & Sharaf, M.A., 2010. "Combined solar organic Rankine cycle with reverse osmosis desalination process: Energy, exergy, and cost evaluations," Renewable Energy, Elsevier, vol. 35(11), pages 2571-2580.
    8. Li, Zhenyu & Siddiqi, Afreen & Anadon, Laura Diaz & Narayanamurti, Venkatesh, 2018. "Towards sustainability in water-energy nexus: Ocean energy for seawater desalination," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3833-3847.
    9. Ghaebi, Hadi & Parikhani, Towhid & Rostamzadeh, Hadi & Farhang, Behzad, 2017. "Thermodynamic and thermoeconomic analysis and optimization of a novel combined cooling and power (CCP) cycle by integrating of ejector refrigeration and Kalina cycles," Energy, Elsevier, vol. 139(C), pages 262-276.
    10. Chen, Q. & Ja, M. Kum & Li, Y. & Chua, K.J., 2018. "Energy, economic and environmental (3E) analysis and multi-objective optimization of a spray-assisted low-temperature desalination system," Energy, Elsevier, vol. 151(C), pages 387-401.
    11. Temiz, Mert & Dincer, Ibrahim, 2022. "A unique ocean and solar based multigenerational system with hydrogen production and thermal energy storage for Arctic communities," Energy, Elsevier, vol. 239(PB).
    12. Zhang, Jingzhi & Zhai, Xiaoyu & Li, Shizhen, 2020. "Numerical studies on the performance of ammonia ejectors used in ocean thermal energy conversion system," Renewable Energy, Elsevier, vol. 161(C), pages 766-776.
    13. Mohammadi, Kasra & Khanmohammadi, Saber & Khorasanizadeh, Hossein & Powell, Kody, 2020. "A comprehensive review of solar only and hybrid solar driven multigeneration systems: Classifications, benefits, design and prospective," Applied Energy, Elsevier, vol. 268(C).
    14. Peng, Jingping & Ge, Yunzheng & Chen, Fengyun & Liu, Lei & Wu, Haoyu & Liu, Weimin, 2022. "Theoretical and experimental study on the performance of a high-efficiency thermodynamic cycle for ocean thermal energy conversion," Renewable Energy, Elsevier, vol. 185(C), pages 734-747.
    15. Sharqawy, Mostafa H. & Zubair, Syed M. & Lienhard, John H., 2011. "Second law analysis of reverse osmosis desalination plants: An alternative design using pressure retarded osmosis," Energy, Elsevier, vol. 36(11), pages 6617-6626.
    16. Khan, N. & Kalair, A. & Abas, N. & Haider, A., 2017. "Review of ocean tidal, wave and thermal energy technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 590-604.
    17. Yamada, Noboru & Hoshi, Akira & Ikegami, Yasuyuki, 2009. "Performance simulation of solar-boosted ocean thermal energy conversion plant," Renewable Energy, Elsevier, vol. 34(7), pages 1752-1758.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tua Halomoan Harahap & Oriza Candra & Younis A. Sabawi & Ai Kamil Kareem & Karrar Shareef Mohsen & Ahmed Hussien Alawadi & Reza Morovati & Ehab Mahamoud Mohamed & Imran Khan & Dag Øivind Madsen, 2023. "Thermodynamic Analysis and Optimization of the Micro-CCHP System with a Biomass Heat Source," Sustainability, MDPI, vol. 15(5), pages 1-15, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mehrenjani, Javad Rezazadeh & Gharehghani, Ayat & Ahmadi, Samareh & Powell, Kody M., 2023. "Dynamic simulation of a triple-mode multi-generation system assisted by heat recovery and solar energy storage modules: Techno-economic optimization using machine learning approaches," Applied Energy, Elsevier, vol. 348(C).
    2. Mao, Liangjie & Wei, Changjiang & Zeng, Song & Cai, Mingjie, 2023. "Heat transfer mechanism of cold-water pipe in ocean thermal energy conversion system," Energy, Elsevier, vol. 269(C).
    3. Shengjun, Zhang & Huaixin, Wang & Tao, Guo, 2011. "Performance comparison and parametric optimization of subcritical Organic Rankine Cycle (ORC) and transcritical power cycle system for low-temperature geothermal power generation," Applied Energy, Elsevier, vol. 88(8), pages 2740-2754, August.
    4. Mahmoudan, Alireza & Samadof, Parviz & Hosseinzadeh, Siamak & Garcia, Davide Astiaso, 2021. "A multigeneration cascade system using ground-source energy with cold recovery: 3E analyses and multi-objective optimization," Energy, Elsevier, vol. 233(C).
    5. Gholizadeh, Towhid & Vajdi, Mohammad & Rostamzadeh, Hadi, 2020. "A new trigeneration system for power, cooling, and freshwater production driven by a flash-binary geothermal heat source," Renewable Energy, Elsevier, vol. 148(C), pages 31-43.
    6. Blanco-Marigorta, A.M. & Lozano-Medina, A. & Marcos, J.D., 2017. "A critical review of definitions for exergetic efficiency in reverse osmosis desalination plants," Energy, Elsevier, vol. 137(C), pages 752-760.
    7. Hu, Zheng & Deng, Zilong & Gao, Wei & Chen, Yongping, 2023. "Experimental study of the absorption refrigeration using ocean thermal energy and its under-lying prospects," Renewable Energy, Elsevier, vol. 213(C), pages 47-62.
    8. Huo, Erguang & Chen, Wei & Deng, Zilong & Gao, Wei & Chen, Yongping, 2023. "Thermodynamic analysis and optimization of a combined cooling and power system using ocean thermal energy and solar energy," Energy, Elsevier, vol. 278(PA).
    9. Ebadollahi, Mohammad & Amidpour, Majid & Pourali, Omid & Ghaebi, Hadi, 2022. "Development of a novel flexible multigeneration energy system for meeting the energy needs of remote areas," Renewable Energy, Elsevier, vol. 198(C), pages 1224-1242.
    10. Rashidi, Jouan & Yoo, ChangKyoo, 2018. "Exergy, exergo-economic, and exergy-pinch analyses (EXPA) of the kalina power-cooling cycle with an ejector," Energy, Elsevier, vol. 155(C), pages 504-520.
    11. sattari sadat, Seyed mohammad & Mirabdolah Lavasani, Arash & Ghaebi, Hadi, 2019. "Economic and thermodynamic evaluation of a new solid oxide fuel cell based polygeneration system," Energy, Elsevier, vol. 175(C), pages 515-533.
    12. Anthony Roy & François Auger & Florian Dupriez-Robin & Salvy Bourguet & Quoc Tuan Tran, 2018. "Electrical Power Supply of Remote Maritime Areas: A Review of Hybrid Systems Based on Marine Renewable Energies," Energies, MDPI, vol. 11(7), pages 1-27, July.
    13. Fan, Chengcheng & Wu, Zhe & Wang, Jiadian & Chen, Yongping & Zhang, Chengbin, 2023. "Thermodynamic process control of ocean thermal energy conversion," Renewable Energy, Elsevier, vol. 210(C), pages 810-821.
    14. Lee, Inkyu & Tester, Jefferson William & You, Fengqi, 2019. "Systems analysis, design, and optimization of geothermal energy systems for power production and polygeneration: State-of-the-art and future challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 109(C), pages 551-577.
    15. Parikhani, Towhid & Ghaebi, Hadi & Rostamzadeh, Hadi, 2018. "A novel geothermal combined cooling and power cycle based on the absorption power cycle: Energy, exergy and exergoeconomic analysis," Energy, Elsevier, vol. 153(C), pages 265-277.
    16. Razmi, Amir Reza & Hanifi, Amir Reza & Shahbakhti, Mahdi, 2023. "Design, thermodynamic, and economic analyses of a green hydrogen storage concept based on solid oxide electrolyzer/fuel cells and heliostat solar field," Renewable Energy, Elsevier, vol. 215(C).
    17. Clemente, D. & Rosa-Santos, P. & Taveira-Pinto, F., 2021. "On the potential synergies and applications of wave energy converters: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    18. Cao, Yan & Mihardjo, Leonardus WW. & Dahari, Mahidzal & Ghaebi, Hadi & Parikhani, Towhid & Mohamed, Abdeliazim Mustafa, 2021. "An innovative double-flash binary cogeneration cooling and power (CCP) system: Thermodynamic evaluation and multi-objective optimization," Energy, Elsevier, vol. 214(C).
    19. Hu, Huakun & Xue, Wendong & Jiang, Peng & Li, Yong, 2022. "Bibliometric analysis for ocean renewable energy: An comprehensive review for hotspots, frontiers, and emerging trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    20. Hai, Tao & Zoghi, Mohammad & Abed, Hooman & Chauhan, Bhupendra Singh & Ahmed, Ahmed Najat, 2023. "Exergy-economic study and multi-objective optimization of a geothermal-based combined organic flash cycle and PEMFC for poly-generation purpose," Energy, Elsevier, vol. 268(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:202:y:2023:i:c:p:17-39. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.