IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v233y2021ics036054422101433x.html
   My bibliography  Save this article

A multigeneration cascade system using ground-source energy with cold recovery: 3E analyses and multi-objective optimization

Author

Listed:
  • Mahmoudan, Alireza
  • Samadof, Parviz
  • Hosseinzadeh, Siamak
  • Garcia, Davide Astiaso

Abstract

A novel integrated energy system based on a geothermal heat source and a liquefied natural gas heat sink is proposed in this study for providing heating, cooling, electricity power, and drinking water simultaneously. The arrangement is a cascade incorporating a flash-binary geothermal system, a regenerative organic Rankine cycle, a simple organic Rankine cycle, a vapor compression refrigeration cycle, a regasification unit, and a reverse osmosis desalination system. Energy, exergy, and exergoeconomic methods are employed to analyze the suggested system. A parametric study based on decision variables is carried out to better assess the system performance. Four different multi-objective optimization problems are also carried out. At the most excellent trade-off solution specified by the TOPSIS method, the system attains 29.15% exergy efficiency and 1.512 $/GJ total product cost per exergy unit. The main output products are consequently calculated to be 101.07 kg/s cooling water, 570.44 kW net output power, and 81.57 kg/s potable water.

Suggested Citation

  • Mahmoudan, Alireza & Samadof, Parviz & Hosseinzadeh, Siamak & Garcia, Davide Astiaso, 2021. "A multigeneration cascade system using ground-source energy with cold recovery: 3E analyses and multi-objective optimization," Energy, Elsevier, vol. 233(C).
  • Handle: RePEc:eee:energy:v:233:y:2021:i:c:s036054422101433x
    DOI: 10.1016/j.energy.2021.121185
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054422101433X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.121185?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sedaghatizadeh, Nima & Arjomandi, Maziar & Cazzolato, Benjamin & Kelso, Richard, 2017. "Wind farm noises: Mechanisms and evidence for their dependency on wind direction," Renewable Energy, Elsevier, vol. 109(C), pages 311-322.
    2. Scherelis, Constantin & Penesis, Irene & Hemer, Mark A. & Cossu, Remo & Wright, Jeffrey T. & Guihen, Damien, 2020. "Investigating biophysical linkages at tidal energy candidate sites: a case study for combining environmental assessment and resource characterisation," Renewable Energy, Elsevier, vol. 159(C), pages 399-413.
    3. Nami, Hossein & Anvari-Moghaddam, Amjad, 2020. "Geothermal driven micro-CCHP for domestic application – Exergy, economic and sustainability analysis," Energy, Elsevier, vol. 207(C).
    4. Scaccabarozzi, Roberto & Tavano, Michele & Invernizzi, Costante Mario & Martelli, Emanuele, 2018. "Comparison of working fluids and cycle optimization for heat recovery ORCs from large internal combustion engines," Energy, Elsevier, vol. 158(C), pages 396-416.
    5. Mamdouh El Haj Assad & Yashar Aryanfar & Salar Radman & Bashria Yousef & Mohammadreza Pakatchian, 2021. "Energy and exergy analyses of single flash geothermal power plant at optimum separator temperature," International Journal of Low-Carbon Technologies, Oxford University Press, vol. 16(3), pages 873-881.
    6. Rodrigues, N. & Pintassilgo, P. & Calhau, F. & González-Gorbeña, E. & Pacheco, A., 2021. "Cost-benefit analysis of tidal energy production in a coastal lagoon: The case of Ria Formosa – Portugal," Energy, Elsevier, vol. 229(C).
    7. Bart Hawkins Kreps, 2020. "The Rising Costs of Fossil‐Fuel Extraction: An Energy Crisis That Will Not Go Away," American Journal of Economics and Sociology, Wiley Blackwell, vol. 79(3), pages 695-717, May.
    8. Tri Tjahjono & Mehdi Ali Ehyaei & Abolfazl Ahmadi & Siamak Hoseinzadeh & Saim Memon, 2021. "Thermo-Economic Analysis on Integrated CO 2 , Organic Rankine Cycles, and NaClO Plant Using Liquefied Natural Gas," Energies, MDPI, vol. 14(10), pages 1-24, May.
    9. Ebadollahi, Mohammad & Rostamzadeh, Hadi & Pedram, Mona Zamani & Ghaebi, Hadi & Amidpour, Majid, 2019. "Proposal and assessment of a new geothermal-based multigeneration system for cooling, heating, power, and hydrogen production, using LNG cold energy recovery," Renewable Energy, Elsevier, vol. 135(C), pages 66-87.
    10. Zhao, Yajing & Wang, Jiangfeng, 2016. "Exergoeconomic analysis and optimization of a flash-binary geothermal power system," Applied Energy, Elsevier, vol. 179(C), pages 159-170.
    11. Yari, Mortaza, 2010. "Exergetic analysis of various types of geothermal power plants," Renewable Energy, Elsevier, vol. 35(1), pages 112-121.
    12. Van Erdeweghe, Sarah & Van Bael, Johan & Laenen, Ben & D'haeseleer, William, 2019. "Optimal configuration for a low-temperature geothermal CHP plant based on thermoeconomic optimization," Energy, Elsevier, vol. 179(C), pages 323-335.
    13. Akrami, Ehsan & Chitsaz, Ata & Nami, Hossein & Mahmoudi, S.M.S., 2017. "Energetic and exergoeconomic assessment of a multi-generation energy system based on indirect use of geothermal energy," Energy, Elsevier, vol. 124(C), pages 625-639.
    14. Van Erdeweghe, Sarah & Van Bael, Johan & Laenen, Ben & D'haeseleer, William, 2018. "Optimal combined heat-and-power plant for a low-temperature geothermal source," Energy, Elsevier, vol. 150(C), pages 396-409.
    15. Zhao, Yajing & Wang, Jiangfeng & Cao, Liyan & Wang, Yu, 2016. "Comprehensive analysis and parametric optimization of a CCP (combined cooling and power) system driven by geothermal source," Energy, Elsevier, vol. 97(C), pages 470-487.
    16. Seyedzadeh, Saleh & Pour Rahimian, Farzad & Oliver, Stephen & Rodriguez, Sergio & Glesk, Ivan, 2020. "Machine learning modelling for predicting non-domestic buildings energy performance: A model to support deep energy retrofit decision-making," Applied Energy, Elsevier, vol. 279(C).
    17. Sayyaadi, Hoseyn & Mehrabipour, Reza, 2012. "Efficiency enhancement of a gas turbine cycle using an optimized tubular recuperative heat exchanger," Energy, Elsevier, vol. 38(1), pages 362-375.
    18. Kanbur, Baris Burak & Xiang, Liming & Dubey, Swapnil & Choo, Fook Hoong & Duan, Fei, 2017. "Cold utilization systems of LNG: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1171-1188.
    19. Nafey, A.S. & Sharaf, M.A., 2010. "Combined solar organic Rankine cycle with reverse osmosis desalination process: Energy, exergy, and cost evaluations," Renewable Energy, Elsevier, vol. 35(11), pages 2571-2580.
    20. Lee, Inkyu & Tester, Jefferson William & You, Fengqi, 2019. "Systems analysis, design, and optimization of geothermal energy systems for power production and polygeneration: State-of-the-art and future challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 109(C), pages 551-577.
    21. M. A. Ehyaei & Simin Baloochzadeh & A. Ahmadi & Stéphane Abanades, 2021. "Energy, exergy, economic, exergoenvironmental, and environmental analyses of a multigeneration system to produce electricity, cooling, potable water, hydrogen and sodium-hypochlorite," Post-Print hal-03221045, HAL.
    22. Gilani, Hooman Azad & Hoseinzadeh, Siamak & Karimi, Hirou & Karimi, Ako & Hassanzadeh, Amir & Garcia, Davide Astiaso, 2021. "Performance analysis of integrated solar heat pump VRF system for the low energy building in Mediterranean island," Renewable Energy, Elsevier, vol. 174(C), pages 1006-1019.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Groppi, Daniele & Feijoo, Felipe & Pfeifer, Antun & Garcia, Davide Astiaso & Duic, Neven, 2023. "Analyzing the impact of demand response and reserves in islands energy planning," Energy, Elsevier, vol. 278(C).
    2. Zhao, Tengfei & Ahmad, Sayed Fayaz & Agrawal, Manoj Kumar & Ahmad Bani Ahmad, Ahmad Yahiya & Ghfar, Ayman A. & Valsalan, Prajoona & Shah, Nehad Ali & Gao, Xiaomin, 2024. "Design and thermo-enviro-economic analyses of a novel thermal design process for a CCHP-desalination application using LNG regasification integrated with a gas turbine power plant," Energy, Elsevier, vol. 295(C).
    3. Keven Alan Robertson & Burton C. English & Christopher D. Clark & Jada M. Thompson & Kimberly L. Jensen & Robert Jamey Menard & Nicole Labbé, 2021. "Optimal N Application Rates on Switchgrass for Producers and a Biorefinery," Energies, MDPI, vol. 14(23), pages 1-13, November.
    4. Ghafariasl, Parviz & Mahmoudan, Alireza & Mohammadi, Mahmoud & Nazarparvar, Aria & Hoseinzadeh, Siamak & Fathali, Mani & Chang, Shing & Zeinalnezhad, Masoomeh & Garcia, Davide Astiaso, 2024. "Neural network-based surrogate modeling and optimization of a multigeneration system," Applied Energy, Elsevier, vol. 364(C).
    5. Shoaei, Mersad & Hajinezhad, Ahmad & Moosavian, Seyed Farhan, 2023. "Design, energy, exergy, economy, and environment (4E) analysis, and multi-objective optimization of a novel integrated energy system based on solar and geothermal resources," Energy, Elsevier, vol. 280(C).
    6. Das, Hirakh Jyoti & Saikia, Rituraj & Mahanta, Pinakeswar, 2023. "Thermo-economic assessment of bubbling fluidized bed paddy dryers," Energy, Elsevier, vol. 263(PC).
    7. Mousavi, Seyedmostafa & Rismanchi, Behzad & Brey, Stefan & Aye, Lu, 2021. "PCM embedded radiant chilled ceiling: A state-of-the-art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    8. Su, Zixiang & Yang, Liu & Wang, Hao & Song, Jianzhong & Jiang, Weixue, 2024. "Exergoenvironmental optimization and thermoeconomic assessment of an innovative multistage Brayton cycle with dual expansion and cooling for ultra-high temperature solar power," Energy, Elsevier, vol. 286(C).
    9. Shuo Li & Huili Zhang & Jiapei Nie & Raf Dewil & Jan Baeyens & Yimin Deng, 2021. "The Direct Reduction of Iron Ore with Hydrogen," Sustainability, MDPI, vol. 13(16), pages 1-15, August.
    10. Jie Liu & Quan Shi & Ruilian Han & Juan Yang, 2021. "A Hybrid GA–PSO–CNN Model for Ultra-Short-Term Wind Power Forecasting," Energies, MDPI, vol. 14(20), pages 1-22, October.
    11. Shi, Ge & Chang, Jian & Xia, Yinshui & Tong, Dike & Jia, Shengyao & Li, Qing & Wang, Xiudeng & Xia, Huakang & Ye, Yidie, 2023. "A wearable collaborative energy harvester combination of frequency-up conversion vibration, ambient light and thermal energy," Renewable Energy, Elsevier, vol. 202(C), pages 513-524.
    12. Mahmoudan, Alireza & Esmaeilion, Farbod & Hoseinzadeh, Siamak & Soltani, Madjid & Ahmadi, Pouria & Rosen, Marc, 2022. "A geothermal and solar-based multigeneration system integrated with a TEG unit: Development, 3E analyses, and multi-objective optimization," Applied Energy, Elsevier, vol. 308(C).
    13. Shi, Xingping & He, Qing & Liu, Yixue & An, Xugang & Zhang, Qianxu & Du, Dongmei, 2024. "Thermodynamic and techno-economic analysis of a novel compressed air energy storage system coupled with coal-fired power unit," Energy, Elsevier, vol. 292(C).
    14. Dileep Kumar & Morshed Alam & Jay G. Sanjayan, 2021. "Retrofitting Building Envelope Using Phase Change Materials and Aerogel Render for Adaptation to Extreme Heatwave: A Multi-Objective Analysis Considering Heat Stress, Energy, Environment, and Cost," Sustainability, MDPI, vol. 13(19), pages 1-29, September.
    15. Yongyou Nie & Yuhan Wang & Lu Li & Haolan Liao, 2023. "Literature Review on Power Battery Echelon Reuse and Recycling from a Circular Economy Perspective," IJERPH, MDPI, vol. 20(5), pages 1-28, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhou, Xiao & Cai, Yangchao & Li, Xuetao, 2024. "Process arrangement and multi-aspect study of a novel environmentally-friendly multigeneration plant relying on a geothermal-based plant combined with the goswami cycle booted by kalina and desalinati," Energy, Elsevier, vol. 299(C).
    2. Ebadollahi, Mohammad & Amidpour, Majid & Pourali, Omid & Ghaebi, Hadi, 2022. "Development of a novel flexible multigeneration energy system for meeting the energy needs of remote areas," Renewable Energy, Elsevier, vol. 198(C), pages 1224-1242.
    3. Lee, Inkyu & Tester, Jefferson William & You, Fengqi, 2019. "Systems analysis, design, and optimization of geothermal energy systems for power production and polygeneration: State-of-the-art and future challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 109(C), pages 551-577.
    4. Schifflechner, Christopher & Kuhnert, Lara & Irrgang, Ludwig & Dawo, Fabian & Kaufmann, Florian & Wieland, Christoph & Spliethoff, Hartmut, 2023. "Geothermal trigeneration systems with Organic Rankine Cycles: Evaluation of different plant configurations considering part load behaviour," Renewable Energy, Elsevier, vol. 207(C), pages 218-233.
    5. Yang, Fubin & Cho, Heejin & Zhang, Hongguang & Zhang, Jian, 2017. "Thermoeconomic multi-objective optimization of a dual loop organic Rankine cycle (ORC) for CNG engine waste heat recovery," Applied Energy, Elsevier, vol. 205(C), pages 1100-1118.
    6. Vaccari, Marco & Pannocchia, Gabriele & Tognotti, Leonardo & Paci, Marco & Bonciani, Roberto, 2020. "A rigorous simulation model of geothermal power plants for emission control," Applied Energy, Elsevier, vol. 263(C).
    7. Hashemian, Nasim & Noorpoor, Alireza, 2022. "A geothermal-biomass powered multi-generation plant with freshwater and hydrogen generation options: Thermo-economic-environmental appraisals and multi-criteria optimization," Renewable Energy, Elsevier, vol. 198(C), pages 254-266.
    8. Wang, Yongzhen & Li, Chengjun & Zhao, Jun & Wu, Boyuan & Du, Yanping & Zhang, Jing & Zhu, Yilin, 2021. "The above-ground strategies to approach the goal of geothermal power generation in China: State of art and future researches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    9. Behzadi, Amirmohammad & Gholamian, Ehsan & Houshfar, Ehsan & Habibollahzade, Ali, 2018. "Multi-objective optimization and exergoeconomic analysis of waste heat recovery from Tehran's waste-to-energy plant integrated with an ORC unit," Energy, Elsevier, vol. 160(C), pages 1055-1068.
    10. Cao, Yan & Dhahad, Hayder A. & Togun, Hussein & Hussen, Hasanen M. & Anqi, Ali E. & Farouk, Naeim & Issakhov, Alibek, 2021. "Feasibility investigation of a novel geothermal-based integrated energy conversion system: Modified specific exergy costing (M-SPECO) method and optimization," Renewable Energy, Elsevier, vol. 180(C), pages 1124-1147.
    11. Feili, Milad & Rostamzadeh, Hadi & Ghaebi, Hadi, 2022. "Thermo-mechanical energy level approach integrated with exergoeconomic optimization for realistic cost evaluation of a novel micro-CCHP system," Renewable Energy, Elsevier, vol. 190(C), pages 630-657.
    12. Shengjun, Zhang & Huaixin, Wang & Tao, Guo, 2011. "Performance comparison and parametric optimization of subcritical Organic Rankine Cycle (ORC) and transcritical power cycle system for low-temperature geothermal power generation," Applied Energy, Elsevier, vol. 88(8), pages 2740-2754, August.
    13. Fabien Marty & Sylvain Serra & Sabine Sochard & Jean-Michel Reneaume, 2019. "Exergy Analysis and Optimization of a Combined Heat and Power Geothermal Plant," Energies, MDPI, vol. 12(6), pages 1-22, March.
    14. Moein Shamoushaki & Mehdi Aliehyaei & Farhad Taghizadeh-Hesary, 2021. "Energy, Exergy, Exergoeconomic, and Exergoenvironmental Assessment of Flash-Binary Geothermal Combined Cooling, Heating and Power Cycle," Energies, MDPI, vol. 14(15), pages 1-24, July.
    15. Xu, Tianfu & Yuan, Yilong & Jia, Xiaofeng & Lei, Yude & Li, Shengtao & Feng, Bo & Hou, Zhaoyun & Jiang, Zhenjiao, 2018. "Prospects of power generation from an enhanced geothermal system by water circulation through two horizontal wells: A case study in the Gonghe Basin, Qinghai Province, China," Energy, Elsevier, vol. 148(C), pages 196-207.
    16. Zhao, Lu & Hai, Qing & Mei, Junlun, 2024. "An integrated approach to green power, cooling, and freshwater production from geothermal and solar energy sources; case study of Jiangsu, China," Energy, Elsevier, vol. 305(C).
    17. Nami, Hossein & Anvari-Moghaddam, Amjad, 2020. "Small-scale CCHP systems for waste heat recovery from cement plants: Thermodynamic, sustainability and economic implications," Energy, Elsevier, vol. 192(C).
    18. Vaccari, Marco & Pannocchia, Gabriele & Tognotti, Leonardo & Paci, Marco, 2023. "Rigorous simulation of geothermal power plants to evaluate environmental performance of alternative configurations," Renewable Energy, Elsevier, vol. 207(C), pages 471-483.
    19. Zhou, Yuhong & Li, Shanshan & Sun, Lei & Zhao, Shupeng & Ashraf Talesh, Seyed Saman, 2020. "Optimization and thermodynamic performance analysis of a power generation system based on geothermal flash and dual-pressure evaporation organic Rankine cycles using zeotropic mixtures," Energy, Elsevier, vol. 194(C).
    20. Lu, Xinli & Zhao, Yangyang & Zhu, Jialing & Zhang, Wei, 2018. "Optimization and applicability of compound power cycles for enhanced geothermal systems," Applied Energy, Elsevier, vol. 229(C), pages 128-141.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:233:y:2021:i:c:s036054422101433x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.