IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v325y2022ics0306261922011321.html
   My bibliography  Save this article

Numerical investigation on power generation performance of enhanced geothermal system with horizontal well

Author

Listed:
  • Jiansheng, Wang
  • Lide, Su
  • Qiang, Zhu
  • Jintao, Niu

Abstract

Enhanced geothermal system (EGS) can efficiently extract heat stored underground, while Organic Rankine Cycle (ORC) system can generate electricity with heat extracted by EGS. A combination of underground heat extraction and ground power generation systems is proposed in present work. The underground heat extraction system that consists of an EGS coupled with hydraulic-thermal horizontal wells and five disc-shaped fractures. The ground power generation system is comprised of a basic ORC system, and R245fa is used as the working fluid. The performance of combined system is numerically investigated in present work. The results indicate that with the increase of geothermal fluid mass flow rate, the geothermal fluid outlet temperature decreases rapidly, and the thermal reservoir life exhausts more earlier. In addition, the optimization of EGS is conducted as well, and the optimal case with the maximum production temperature has been obtained. It’s found that when the mass flow rate and injection temperature of geothermal fluid are 30 kg/s and 50 °C respectively, the production temperature of considered EGS drops to 441.3 K after thirty years of operation, the increase in pump power consumed by transporting geothermal fluid rises to 0.53 MW, and the net output power of ORC system drops to 895 kW. Furthermore, it’s found that the geothermal fluid mass flow rate has an obvious influence on the power generation performance. In addition, a sensitivity analysis of the three considered parameters (production pressure, fracture distance, well spacing) has been performed, which reveals that well spacing has the greatest effect on EGS power generation performance.

Suggested Citation

  • Jiansheng, Wang & Lide, Su & Qiang, Zhu & Jintao, Niu, 2022. "Numerical investigation on power generation performance of enhanced geothermal system with horizontal well," Applied Energy, Elsevier, vol. 325(C).
  • Handle: RePEc:eee:appene:v:325:y:2022:i:c:s0306261922011321
    DOI: 10.1016/j.apenergy.2022.119865
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261922011321
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2022.119865?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhou, Luming & Zhu, Zhende & Xie, Xinghua & Hu, Yunjin, 2022. "Coupled thermal–hydraulic–mechanical model for an enhanced geothermal system and numerical analysis of its heat mining performance," Renewable Energy, Elsevier, vol. 181(C), pages 1440-1458.
    2. Wang, Yongzhen & Li, Chengjun & Zhao, Jun & Wu, Boyuan & Du, Yanping & Zhang, Jing & Zhu, Yilin, 2021. "The above-ground strategies to approach the goal of geothermal power generation in China: State of art and future researches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    3. Zhang, Yu & Zhang, Yanjun & Zhou, Ling & Lei, Zhihong & Guo, Liangliang & Zhou, Jian, 2022. "Reservoir stimulation design and evaluation of heat exploitation of a two-horizontal-well enhanced geothermal system (EGS) in the Zhacang geothermal field, Northwest China," Renewable Energy, Elsevier, vol. 183(C), pages 330-350.
    4. Parikhani, Towhid & Ghaebi, Hadi & Rostamzadeh, Hadi, 2018. "A novel geothermal combined cooling and power cycle based on the absorption power cycle: Energy, exergy and exergoeconomic analysis," Energy, Elsevier, vol. 153(C), pages 265-277.
    5. Zhang, Yan-Jun & Guo, Liang-Liang & Li, Zheng-Wei & Yu, Zi-Wang & Xu, Tian-Fu & Lan, Cheng-Yu, 2015. "Electricity generation and heating potential from enhanced geothermal system in Songliao Basin, China: Different reservoir stimulation strategies for tight rock and naturally fractured formations," Energy, Elsevier, vol. 93(P2), pages 1860-1885.
    6. Mamdouh El Haj Assad & Yashar Aryanfar & Salar Radman & Bashria Yousef & Mohammadreza Pakatchian, 2021. "Energy and exergy analyses of single flash geothermal power plant at optimum separator temperature," International Journal of Low-Carbon Technologies, Oxford University Press, vol. 16(3), pages 873-881.
    7. Mahmoudi, S.M.S. & Akbari Kordlar, M., 2018. "A new flexible geothermal based cogeneration system producing power and refrigeration," Renewable Energy, Elsevier, vol. 123(C), pages 499-512.
    8. Li, Jian & Ge, Zhong & Duan, Yuanyuan & Yang, Zhen & Liu, Qiang, 2018. "Parametric optimization and thermodynamic performance comparison of single-pressure and dual-pressure evaporation organic Rankine cycles," Applied Energy, Elsevier, vol. 217(C), pages 409-421.
    9. Zhao, Xin-gang & Wan, Guan, 2014. "Current situation and prospect of China׳s geothermal resources," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 651-661.
    10. Cui, Guodong & Ren, Shaoran & Zhang, Liang & Ezekiel, Justin & Enechukwu, Chioma & Wang, Yi & Zhang, Rui, 2017. "Geothermal exploitation from hot dry rocks via recycling heat transmission fluid in a horizontal well," Energy, Elsevier, vol. 128(C), pages 366-377.
    11. Aliyu, Musa D. & Archer, Rosalind A., 2021. "A thermo-hydro-mechanical model of a hot dry rock geothermal reservoir," Renewable Energy, Elsevier, vol. 176(C), pages 475-493.
    12. Sun, Zhi-xue & Zhang, Xu & Xu, Yi & Yao, Jun & Wang, Hao-xuan & Lv, Shuhuan & Sun, Zhi-lei & Huang, Yong & Cai, Ming-yu & Huang, Xiaoxue, 2017. "Numerical simulation of the heat extraction in EGS with thermal-hydraulic-mechanical coupling method based on discrete fractures model," Energy, Elsevier, vol. 120(C), pages 20-33.
    13. Meng, Nan & Li, Tailu & Wang, Jianqiang & Jia, Yanan & Liu, Qinghua & Qin, Haosen, 2020. "Synergetic mechanism of fracture properties and system configuration on techno-economic performance of enhanced geothermal system for power generation during life cycle," Renewable Energy, Elsevier, vol. 152(C), pages 910-924.
    14. Han, Songcai & Cheng, Yuanfang & Gao, Qi & Yan, Chuanliang & Zhang, Jincheng, 2020. "Numerical study on heat extraction performance of multistage fracturing Enhanced Geothermal System," Renewable Energy, Elsevier, vol. 149(C), pages 1214-1226.
    15. Manente, Giovanni & Lazzaretto, Andrea & Bonamico, Eleonora, 2017. "Design guidelines for the choice between single and dual pressure layouts in organic Rankine cycle (ORC) systems," Energy, Elsevier, vol. 123(C), pages 413-431.
    16. Gao, Xuefeng & Zhang, Yanjun & Huang, Yibin & Ma, Yongjie & Zhao, Yi & Liu, Qiangbin, 2021. "Study on heat extraction considering the number and orientation of multilateral wells in a complex fractured geothermal reservoir," Renewable Energy, Elsevier, vol. 177(C), pages 833-852.
    17. Yari, Mortaza, 2010. "Exergetic analysis of various types of geothermal power plants," Renewable Energy, Elsevier, vol. 35(1), pages 112-121.
    18. Olasolo, P. & Juárez, M.C. & Morales, M.P. & D´Amico, Sebastiano & Liarte, I.A., 2016. "Enhanced geothermal systems (EGS): A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 133-144.
    19. Li, Sanbai & Feng, Xia-Ting & Zhang, Dongxiao & Tang, Huiying, 2019. "Coupled thermo-hydro-mechanical analysis of stimulation and production for fractured geothermal reservoirs," Applied Energy, Elsevier, vol. 247(C), pages 40-59.
    20. Zhang, Jie & Xie, Jingxuan, 2020. "Effect of reservoir’s permeability and porosity on the performance of cellular development model for enhanced geothermal system," Renewable Energy, Elsevier, vol. 148(C), pages 824-838.
    21. Davis, Adelina P. & Michaelides, Efstathios E., 2009. "Geothermal power production from abandoned oil wells," Energy, Elsevier, vol. 34(7), pages 866-872.
    22. Ma, Yuanyuan & Li, Shibin & Zhang, Ligang & Liu, Songze & Liu, Zhaoyi & Li, Hao & Shi, Erxiu & Zhang, Haijun, 2020. "Numerical simulation study on the heat extraction performance of multi-well injection enhanced geothermal system," Renewable Energy, Elsevier, vol. 151(C), pages 782-795.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Meng, Nan & Gao, Xiang & Wang, Zeyu & Li, Tailu, 2024. "Numerical investigation and optimization on dynamic power generation performance of enhanced geothermal system," Energy, Elsevier, vol. 288(C).
    2. Hai, Tao & Asadollahzadeh, Muhammad & Chauhan, Bhupendra Singh & AlQemlas, Turki & Elbadawy, Ibrahim & Salah, Bashir & Feyzbaxsh, Mahrad, 2023. "3E investigation and artificial neural network optimization of a new triple-flash geothermally-powered configuration," Renewable Energy, Elsevier, vol. 215(C).
    3. Hsieh, Jui-Ching & Li, Yi-Chen & Lin, Yu-Cheng & Yeh, Tzu-Chuan, 2024. "Off-design performance and economic analysis in coupled binary cycle with geothermal reservoir and turbo-expander," Energy, Elsevier, vol. 305(C).
    4. Hsieh, Jui-Ching & Li, Bo-Han & Lee, Bo-Heng & Royandi, Muhamad Aditya & Salsabilla, Nadya Sefira, 2024. "Performance and economic analyses of a geothermal reservoir model coupled with a flash–binary cycle model," Renewable Energy, Elsevier, vol. 230(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Jun & Zhao, Peng & Peng, Jiao & Xian, Hongyu, 2024. "Insight into the investigation of heat extraction performance affected by natural fractures in enhanced geothermal system (EGS) with THM multiphysical field model," Renewable Energy, Elsevier, vol. 231(C).
    2. Xiang Gao & Tailu Li & Yao Zhang & Xiangfei Kong & Nan Meng, 2022. "A Review of Simulation Models of Heat Extraction for a Geothermal Reservoir in an Enhanced Geothermal System," Energies, MDPI, vol. 15(19), pages 1-23, September.
    3. Xie, Jingxuan & Wang, Jiansheng, 2022. "Compatibility investigation and techno-economic performance optimization of whole geothermal power generation system," Applied Energy, Elsevier, vol. 328(C).
    4. Gao, Xiang & Li, Tailu & Meng, Nan & Gao, Haiyang & Li, Xuelong & Gao, Ruizhao & Wang, Zeyu & Wang, Jingyi, 2023. "Supercritical flow and heat transfer of SCO2 in geothermal reservoir under non-Darcy's law combined with power generation from hot dry rock," Renewable Energy, Elsevier, vol. 206(C), pages 428-440.
    5. Hsieh, Jui-Ching & Li, Yi-Chen & Lin, Yu-Cheng & Yeh, Tzu-Chuan, 2024. "Off-design performance and economic analysis in coupled binary cycle with geothermal reservoir and turbo-expander," Energy, Elsevier, vol. 305(C).
    6. Zhao, Peng & Liu, Jun & Elsworth, Derek, 2023. "Numerical study on a multifracture enhanced geothermal system considering matrix permeability enhancement induced by thermal unloading," Renewable Energy, Elsevier, vol. 203(C), pages 33-44.
    7. Han, Bowen & Wang, Shuhong & Zhang, Ze & Wang, Ye, 2024. "Numerical simulation of geothermal reservoir thermal recovery of heterogeneous discrete fracture network-rock matrix system," Energy, Elsevier, vol. 305(C).
    8. Ma, Yuanyuan & Li, Shibin & Zhang, Ligang & Liu, Songze & Liu, Zhaoyi & Li, Hao & Shi, Erxiu, 2020. "Study on the effect of well layout schemes and fracture parameters on the heat extraction performance of enhanced geothermal system in fractured reservoir," Energy, Elsevier, vol. 202(C).
    9. Qiao, Mingzheng & Jing, Zefeng & Feng, Chenchen & Li, Minghui & Chen, Cheng & Zou, Xupeng & Zhou, Yujuan, 2024. "Review on heat extraction systems of hot dry rock: Classifications, benefits, limitations, research status and future prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 196(C).
    10. Wu, Xiaotian & Yu, Likui & Hassan, N.M.S. & Ma, Weiwu & Liu, Gang, 2021. "Evaluation and optimization of heat extraction in enhanced geothermal system via failure area percentage," Renewable Energy, Elsevier, vol. 169(C), pages 204-220.
    11. Yuan Zhao & Chenghao Gao & Chengjun Li & Jie Sun & Chunyan Wang & Qiang Liu & Jun Zhao, 2022. "Energy and Exergy Analyses of Geothermal Organic Rankine Cycles Considering the Effect of Brine Reinjection Temperature," Energies, MDPI, vol. 15(17), pages 1-20, August.
    12. Zhang, Jie & Xie, Jingxuan, 2020. "Effect of reservoir’s permeability and porosity on the performance of cellular development model for enhanced geothermal system," Renewable Energy, Elsevier, vol. 148(C), pages 824-838.
    13. Ma, Yuanyuan & Li, Shibin & Zhang, Ligang & Liu, Songze & Liu, Zhaoyi & Li, Hao & Shi, Erxiu & Liu, Xuemei & Liu, Hongliang, 2020. "Analysis on the heat extraction performance of multi-well injection enhanced geothermal system based on leaf-like bifurcated fracture networks," Energy, Elsevier, vol. 213(C).
    14. Guo, Tiankui & Zhang, Yuelong & He, Jiayuan & Gong, Facheng & Chen, Ming & Liu, Xiaoqiang, 2021. "Research on geothermal development model of abandoned high temperature oil reservoir in North China oilfield," Renewable Energy, Elsevier, vol. 177(C), pages 1-12.
    15. Ma, Yuanyuan & Li, Shibin & Zhang, Ligang & Liu, Songze & Liu, Zhaoyi & Li, Hao & Shi, Erxiu & Zhang, Haijun, 2020. "Numerical simulation study on the heat extraction performance of multi-well injection enhanced geothermal system," Renewable Energy, Elsevier, vol. 151(C), pages 782-795.
    16. Li, Shijie & Liu, Jie & Huang, Wanying & Zhang, Chenghang, 2024. "Numerical simulation of the thermo-hydro-chemical coupling in enhanced geothermal systems: Impact of SiO2 dissolution/precipitation in matrix and fractures," Energy, Elsevier, vol. 290(C).
    17. Li, S. & Wang, S. & Tang, H., 2022. "Stimulation mechanism and design of enhanced geothermal systems: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    18. Hsieh, Jui-Ching & Li, Bo-Han & Lee, Bo-Heng & Royandi, Muhamad Aditya & Salsabilla, Nadya Sefira, 2024. "Performance and economic analyses of a geothermal reservoir model coupled with a flash–binary cycle model," Renewable Energy, Elsevier, vol. 230(C).
    19. Yu, Likui & Wu, Xiaotian & Hassan, N.M.S. & Wang, Yadan & Ma, Weiwu & Liu, Gang, 2020. "Modified zipper fracturing in enhanced geothermal system reservoir and heat extraction optimization via orthogonal design," Renewable Energy, Elsevier, vol. 161(C), pages 373-385.
    20. Zhang, Wei & Qu, Zhanqing & Guo, Tiankui & Wang, Zhiyuan, 2019. "Study of the enhanced geothermal system (EGS) heat mining from variably fractured hot dry rock under thermal stress," Renewable Energy, Elsevier, vol. 143(C), pages 855-871.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:325:y:2022:i:c:s0306261922011321. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.