IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i20p11133-d652189.html
   My bibliography  Save this article

Different Geothermal Power Cycle Configurations Cost Estimation Models

Author

Listed:
  • Moein Shamoushaki

    (Department of Industrial Engineering, University of Florence, 50134 Firenze, Italy)

  • Giampaolo Manfrida

    (Department of Industrial Engineering, University of Florence, 50134 Firenze, Italy)

  • Lorenzo Talluri

    (Department of Industrial Engineering, University of Florence, 50134 Firenze, Italy)

  • Pouriya H. Niknam

    (Department of Industrial Engineering, University of Florence, 50134 Firenze, Italy)

  • Daniele Fiaschi

    (Department of Industrial Engineering, University of Florence, 50134 Firenze, Italy)

Abstract

An economic assessment of different geothermal power cycle configurations to generate cost models is conducted in this study. The thermodynamic and exergoeconomic modeling of the cycles is performed in MATLAB coupled to Refprop. The models were derived based on robust multivariable regression to minimize the residuals by using the genetic algorithm. The cross-validation approach is applied to determine a dataset to examine the model in the training phase for validation and reduce the overfitting problem. The generated cost models are the total cost rate, the plant’s total cost, and power generation cost. The cost models and the relevant coefficients are generated based on the most compatibilities and lower error. The results showed that one of the most influential factors on the ORC cycle is the working fluid type, which significantly affects the final economic results. Other parameters that considerably impact economic models results, of all configurations, are geothermal fluid pressure and temperature and inlet pressure of turbine. Rising the geothermal fluid mass flow rate has a remarkable impact on cost models as the capacity and size of equipment increases. The generated cost models in this study can estimate the mentioned cost parameters with an acceptable deviation and provide a fast way to predict the total cost of the power plants.

Suggested Citation

  • Moein Shamoushaki & Giampaolo Manfrida & Lorenzo Talluri & Pouriya H. Niknam & Daniele Fiaschi, 2021. "Different Geothermal Power Cycle Configurations Cost Estimation Models," Sustainability, MDPI, vol. 13(20), pages 1-19, October.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:20:p:11133-:d:652189
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/20/11133/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/20/11133/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mohammadkhani, F. & Shokati, N. & Mahmoudi, S.M.S. & Yari, M. & Rosen, M.A., 2014. "Exergoeconomic assessment and parametric study of a Gas Turbine-Modular Helium Reactor combined with two Organic Rankine Cycles," Energy, Elsevier, vol. 65(C), pages 533-543.
    2. Mamdouh El Haj Assad & Yashar Aryanfar & Salar Radman & Bashria Yousef & Mohammadreza Pakatchian, 2021. "Energy and exergy analyses of single flash geothermal power plant at optimum separator temperature," International Journal of Low-Carbon Technologies, Oxford University Press, vol. 16(3), pages 873-881.
    3. Pouriya H. Niknam & Lorenzo Talluri & Daniele Fiaschi & Giampaolo Manfrida, 2020. "Improved Solubility Model for Pure Gas and Binary Mixture of CO 2 -H 2 S in Water: A Geothermal Case Study with Total Reinjection," Energies, MDPI, vol. 13(11), pages 1-14, June.
    4. Caputo, Antonio C. & Pelagagge, Pacifico M., 2008. "Parametric and neural methods for cost estimation of process vessels," International Journal of Production Economics, Elsevier, vol. 112(2), pages 934-954, April.
    5. Ogayar, B. & Vidal, P.G., 2009. "Cost determination of the electro-mechanical equipment of a small hydro-power plant," Renewable Energy, Elsevier, vol. 34(1), pages 6-13.
    6. Shamoushaki, Moein & Ehyaei, M.A. & Ghanatir, Farrokh, 2017. "Exergy, economic and environmental analysis and multi-objective optimization of a SOFC-GT power plant," Energy, Elsevier, vol. 134(C), pages 515-531.
    7. Lazzaretto, Andrea & Tsatsaronis, George, 2006. "SPECO: A systematic and general methodology for calculating efficiencies and costs in thermal systems," Energy, Elsevier, vol. 31(8), pages 1257-1289.
    8. Akrami, Ehsan & Chitsaz, Ata & Nami, Hossein & Mahmoudi, S.M.S., 2017. "Energetic and exergoeconomic assessment of a multi-generation energy system based on indirect use of geothermal energy," Energy, Elsevier, vol. 124(C), pages 625-639.
    9. Moein Shamoushaki & Pouriya H. Niknam & Lorenzo Talluri & Giampaolo Manfrida & Daniele Fiaschi, 2021. "Development of Cost Correlations for the Economic Assessment of Power Plant Equipment," Energies, MDPI, vol. 14(9), pages 1-19, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shamoushaki, Moein & Fiaschi, Daniele & Manfrida, Giampaolo & Talluri, Lorenzo, 2022. "Energy, exergy, economic and environmental (4E) analyses of a geothermal power plant with NCGs reinjection," Energy, Elsevier, vol. 244(PA).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Moein Shamoushaki & Pouriya H. Niknam & Lorenzo Talluri & Giampaolo Manfrida & Daniele Fiaschi, 2021. "Development of Cost Correlations for the Economic Assessment of Power Plant Equipment," Energies, MDPI, vol. 14(9), pages 1-19, May.
    2. Moein Shamoushaki & Mehdi Aliehyaei & Farhad Taghizadeh-Hesary, 2021. "Energy, Exergy, Exergoeconomic, and Exergoenvironmental Assessment of Flash-Binary Geothermal Combined Cooling, Heating and Power Cycle," Energies, MDPI, vol. 14(15), pages 1-24, July.
    3. Shamoushaki, Moein & Fiaschi, Daniele & Manfrida, Giampaolo & Talluri, Lorenzo, 2022. "Energy, exergy, economic and environmental (4E) analyses of a geothermal power plant with NCGs reinjection," Energy, Elsevier, vol. 244(PA).
    4. Zhao, Yajing & Wang, Jiangfeng, 2016. "Exergoeconomic analysis and optimization of a flash-binary geothermal power system," Applied Energy, Elsevier, vol. 179(C), pages 159-170.
    5. Mahmoudan, Alireza & Samadof, Parviz & Hosseinzadeh, Siamak & Garcia, Davide Astiaso, 2021. "A multigeneration cascade system using ground-source energy with cold recovery: 3E analyses and multi-objective optimization," Energy, Elsevier, vol. 233(C).
    6. Nami, Hossein & Anvari-Moghaddam, Amjad, 2020. "Small-scale CCHP systems for waste heat recovery from cement plants: Thermodynamic, sustainability and economic implications," Energy, Elsevier, vol. 192(C).
    7. M. Ehyaei & M. Kasaeian & Stéphane Abanades & Armin Razmjoo & Hamed Afshari & Marc Rosen & Biplab Das, 2023. "Natural gas‐fueled multigeneration for reducing environmental effects of brine and increasing product diversity: Thermodynamic and economic analyses," Post-Print hal-04113893, HAL.
    8. Hashemian, Nasim & Noorpoor, Alireza, 2022. "A geothermal-biomass powered multi-generation plant with freshwater and hydrogen generation options: Thermo-economic-environmental appraisals and multi-criteria optimization," Renewable Energy, Elsevier, vol. 198(C), pages 254-266.
    9. Boyaghchi, Fateme Ahmadi & Chavoshi, Mansoure & Sabeti, Vajiheh, 2018. "Multi-generation system incorporated with PEM electrolyzer and dual ORC based on biomass gasification waste heat recovery: Exergetic, economic and environmental impact optimizations," Energy, Elsevier, vol. 145(C), pages 38-51.
    10. Fan, Guangli & Ahmadi, A. & Ehyaei, M.A. & Das, Biplab, 2021. "Energy, exergy, economic and exergoenvironmental analyses of polygeneration system integrated gas cycle, absorption chiller, and Copper-Chlorine thermochemical cycle to produce power, cooling, and hyd," Energy, Elsevier, vol. 222(C).
    11. Najjar, Yousef S.H. & Abubaker, Ahmad M., 2017. "Thermoeconomic analysis and optimization of a novel inlet air cooling system with gas turbine engines using cascaded waste-heat recovery," Energy, Elsevier, vol. 128(C), pages 421-434.
    12. Shokati, Naser & Ranjbar, Faramarz & Yari, Mortaza, 2015. "Exergoeconomic analysis and optimization of basic, dual-pressure and dual-fluid ORCs and Kalina geothermal power plants: A comparative study," Renewable Energy, Elsevier, vol. 83(C), pages 527-542.
    13. Chitgar, Nazanin & Moghimi, Mahdi, 2020. "Design and evaluation of a novel multi-generation system based on SOFC-GT for electricity, fresh water and hydrogen production," Energy, Elsevier, vol. 197(C).
    14. Zhao, Yajing & Wang, Jiangfeng & Cao, Liyan & Wang, Yu, 2016. "Comprehensive analysis and parametric optimization of a CCP (combined cooling and power) system driven by geothermal source," Energy, Elsevier, vol. 97(C), pages 470-487.
    15. Abdolalipouradl, Mehran & Mohammadkhani, Farzad & Khalilarya, Shahram, 2020. "A comparative analysis of novel combined flash-binary cycles for Sabalan geothermal wells: Thermodynamic and exergoeconomic viewpoints," Energy, Elsevier, vol. 209(C).
    16. Mohammadkhani, Farzad & Ranjbar, Faramarz & Yari, Mortaza, 2015. "A comparative study on the ammonia–water based bottoming power cycles: The exergoeconomic viewpoint," Energy, Elsevier, vol. 87(C), pages 425-434.
    17. Habibi, Hamed & Chitsaz, Ata & Javaherdeh, Koroush & Zoghi, Mohammad & Ayazpour, Mojtaba, 2018. "Thermo-economic analysis and optimization of a solar-driven ammonia-water regenerative Rankine cycle and LNG cold energy," Energy, Elsevier, vol. 149(C), pages 147-160.
    18. Nemati, Arash & Nami, Hossein & Yari, Mortaza, 2018. "Assessment of different configurations of solar energy driven organic flash cycles (OFCs) via exergy and exergoeconomic methodologies," Renewable Energy, Elsevier, vol. 115(C), pages 1231-1248.
    19. Olusegun David Samuel & Peter A. Aigba & Thien Khanh Tran & H. Fayaz & Carlo Pastore & Oguzhan Der & Ali Erçetin & Christopher C. Enweremadu & Ahmad Mustafa, 2023. "Comparison of the Techno-Economic and Environmental Assessment of Hydrodynamic Cavitation and Mechanical Stirring Reactors for the Production of Sustainable Hevea brasiliensis Ethyl Ester," Sustainability, MDPI, vol. 15(23), pages 1-27, November.
    20. Seyed Mohammad Seyed Mahmoudi & Ramin Ghiami Sardroud & Mohsen Sadeghi & Marc A. Rosen, 2022. "Integration of Supercritical CO 2 Recompression Brayton Cycle with Organic Rankine/Flash and Kalina Cycles: Thermoeconomic Comparison," Sustainability, MDPI, vol. 14(14), pages 1-29, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:20:p:11133-:d:652189. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.