IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i9p2665-d549637.html
   My bibliography  Save this article

Development of Cost Correlations for the Economic Assessment of Power Plant Equipment

Author

Listed:
  • Moein Shamoushaki

    (Department of Industrial Engineering, University of Florence, 50134 Firenze, Italy)

  • Pouriya H. Niknam

    (Department of Industrial Engineering, University of Florence, 50134 Firenze, Italy)

  • Lorenzo Talluri

    (Department of Industrial Engineering, University of Florence, 50134 Firenze, Italy)

  • Giampaolo Manfrida

    (Department of Industrial Engineering, University of Florence, 50134 Firenze, Italy)

  • Daniele Fiaschi

    (Department of Industrial Engineering, University of Florence, 50134 Firenze, Italy)

Abstract

A comprehensive cost correlation analysis was conducted based on available cost correlations, and new equipment cost correlation models were proposed based on QUE$TOR modeling. Cost correlations for various types of equipment such as pumps, compressors, heat exchangers, air coolers, and pressure vessels were generated on the basis of extracted cost data. The models were derived on the basis of robust multivariable regression with the aim of minimizing the residuals by using the genetic algorithm. The proposed compressor models for both centrifugal and reciprocating types showed that the Turton cost estimation for carbon steel compressor and Matche’s and Mhhe’s data were compatible with the generated model. According to the results, the cost trend in the Turton correlation for carbon steel had a somewhat lower estimation than these correlations. Further, the cost trend of the Turton correlation for carbon steel pressure vessels was close to the presented model trend for both bullet and sphere types. The Turton cost trend for U-tube shell-and-tube heat exchangers with carbon steel shell and stainless steel tube was close to the proposed heat exchanger model. Furthermore, the Turton cost trend for the flat-plate heat exchanger using carbon steel was similar to the proposed model with a slight difference.

Suggested Citation

  • Moein Shamoushaki & Pouriya H. Niknam & Lorenzo Talluri & Giampaolo Manfrida & Daniele Fiaschi, 2021. "Development of Cost Correlations for the Economic Assessment of Power Plant Equipment," Energies, MDPI, vol. 14(9), pages 1-19, May.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:9:p:2665-:d:549637
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/9/2665/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/9/2665/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wang, Xurong & Dai, Yiping, 2016. "Exergoeconomic analysis of utilizing the transcritical CO2 cycle and the ORC for a recompression supercritical CO2 cycle waste heat recovery: A comparative study," Applied Energy, Elsevier, vol. 170(C), pages 193-207.
    2. Daniele Fiaschi & Giampaolo Manfrida & Karolina Petela & Lorenzo Talluri, 2019. "Thermo-Electric Energy Storage with Solar Heat Integration: Exergy and Exergo-Economic Analysis," Energies, MDPI, vol. 12(4), pages 1-21, February.
    3. Behzadi, Amirmohammad & Gholamian, Ehsan & Houshfar, Ehsan & Habibollahzade, Ali, 2018. "Multi-objective optimization and exergoeconomic analysis of waste heat recovery from Tehran's waste-to-energy plant integrated with an ORC unit," Energy, Elsevier, vol. 160(C), pages 1055-1068.
    4. Parikhani, Towhid & Azariyan, Hossein & Behrad, Reza & Ghaebi, Hadi & Jannatkhah, Javad, 2020. "Thermodynamic and thermoeconomic analysis of a novel ammonia-water mixture combined cooling, heating, and power (CCHP) cycle," Renewable Energy, Elsevier, vol. 145(C), pages 1158-1175.
    5. Tempesti, Duccio & Fiaschi, Daniele, 2013. "Thermo-economic assessment of a micro CHP system fuelled by geothermal and solar energy," Energy, Elsevier, vol. 58(C), pages 45-51.
    6. Sadeghi, Mohsen & Chitsaz, Ata & Mahmoudi, S.M.S. & Rosen, Marc A., 2015. "Thermoeconomic optimization using an evolutionary algorithm of a trigeneration system driven by a solid oxide fuel cell," Energy, Elsevier, vol. 89(C), pages 191-204.
    7. Akrami, Ehsan & Chitsaz, Ata & Nami, Hossein & Mahmoudi, S.M.S., 2017. "Energetic and exergoeconomic assessment of a multi-generation energy system based on indirect use of geothermal energy," Energy, Elsevier, vol. 124(C), pages 625-639.
    8. Hassan Athari & Saeed Soltani & Marc A. Rosen & Seyed Mohammad Seyed Mahmoudi & Tatiana Morosuk, 2015. "Comparative Exergoeconomic Analyses of Gas Turbine Steam Injection Cycles with and without Fogging Inlet Cooling," Sustainability, MDPI, vol. 7(9), pages 1-22, September.
    9. Gokturk Poyrazoglu, 2021. "Determination of Price Zones during Transition from Uniform to Zonal Electricity Market: A Case Study for Turkey," Energies, MDPI, vol. 14(4), pages 1-13, February.
    10. Pouriya H. Niknam & Lorenzo Talluri & Daniele Fiaschi & Giampaolo Manfrida, 2020. "Improved Solubility Model for Pure Gas and Binary Mixture of CO 2 -H 2 S in Water: A Geothermal Case Study with Total Reinjection," Energies, MDPI, vol. 13(11), pages 1-14, June.
    11. Caputo, Antonio C. & Pelagagge, Pacifico M., 2008. "Parametric and neural methods for cost estimation of process vessels," International Journal of Production Economics, Elsevier, vol. 112(2), pages 934-954, April.
    12. Lecompte, S. & Huisseune, H. & van den Broek, M. & De Schampheleire, S. & De Paepe, M., 2013. "Part load based thermo-economic optimization of the Organic Rankine Cycle (ORC) applied to a combined heat and power (CHP) system," Applied Energy, Elsevier, vol. 111(C), pages 871-881.
    13. Ogayar, B. & Vidal, P.G., 2009. "Cost determination of the electro-mechanical equipment of a small hydro-power plant," Renewable Energy, Elsevier, vol. 34(1), pages 6-13.
    14. Piotr F. Borowski, 2020. "Zonal and Nodal Models of Energy Market in European Union," Energies, MDPI, vol. 13(16), pages 1-21, August.
    15. Shamoushaki, Moein & Ehyaei, M.A. & Ghanatir, Farrokh, 2017. "Exergy, economic and environmental analysis and multi-objective optimization of a SOFC-GT power plant," Energy, Elsevier, vol. 134(C), pages 515-531.
    16. Reyhani, Hamed Akbarpour & Meratizaman, Mousa & Ebrahimi, Armin & Pourali, Omid & Amidpour, Majid, 2016. "Thermodynamic and economic optimization of SOFC-GT and its cogeneration opportunities using generated syngas from heavy fuel oil gasification," Energy, Elsevier, vol. 107(C), pages 141-164.
    17. Francesco Calise & Francesco Liberato Cappiello & Massimo Dentice d’Accadia & Maria Vicidomini, 2020. "Thermo-Economic Analysis of Hybrid Solar-Geothermal Polygeneration Plants in Different Configurations," Energies, MDPI, vol. 13(9), pages 1-29, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Somchart Chantasiriwan, 2023. "Reduction in Fuel Consumption in Biomass-Fired Power Plant Using Hybrid Drying System," Energies, MDPI, vol. 16(17), pages 1-14, August.
    2. Daniele Dadi & Vito Introna & Miriam Benedetti, 2022. "Decarbonization of Heat through Low-Temperature Waste Heat Recovery: Proposal of a Tool for the Preliminary Evaluation of Technologies in the Industrial Sector," Sustainability, MDPI, vol. 14(19), pages 1-28, October.
    3. Andrea Arbula Blecich & Paolo Blecich, 2023. "Thermoeconomic Analysis of Subcritical and Supercritical Isobutane Cycles for Geothermal Power Generation," Sustainability, MDPI, vol. 15(11), pages 1-25, May.
    4. Moein Shamoushaki & Giampaolo Manfrida & Lorenzo Talluri & Pouriya H. Niknam & Daniele Fiaschi, 2021. "Different Geothermal Power Cycle Configurations Cost Estimation Models," Sustainability, MDPI, vol. 13(20), pages 1-19, October.
    5. Julian Unterluggauer & Verena Sulzgruber & Clemens Kroiss & Johannes Riedl & Reinhard Jentsch & Reinhard Willinger, 2023. "Design for a Heat Pump with Sink Temperatures of 200 °C Using a Radial Compressor," Energies, MDPI, vol. 16(13), pages 1-21, June.
    6. Shamoushaki, Moein & Fiaschi, Daniele & Manfrida, Giampaolo & Talluri, Lorenzo, 2022. "Energy, exergy, economic and environmental (4E) analyses of a geothermal power plant with NCGs reinjection," Energy, Elsevier, vol. 244(PA).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Moein Shamoushaki & Giampaolo Manfrida & Lorenzo Talluri & Pouriya H. Niknam & Daniele Fiaschi, 2021. "Different Geothermal Power Cycle Configurations Cost Estimation Models," Sustainability, MDPI, vol. 13(20), pages 1-19, October.
    2. Karimi, Shahram & Mansouri, Sima, 2018. "A comparative profitability study of geothermal electricity production in developed and developing countries: Exergoeconomic analysis and optimization of different ORC configurations," Renewable Energy, Elsevier, vol. 115(C), pages 600-619.
    3. Sattari Sadat, Seyed Mohammad & Ghaebi, Hadi & Lavasani, Arash Mirabdolah, 2020. "4E analyses of an innovative polygeneration system based on SOFC," Renewable Energy, Elsevier, vol. 156(C), pages 986-1007.
    4. Samar Fatima & Verner Püvi & Ammar Arshad & Mahdi Pourakbari-Kasmaei & Matti Lehtonen, 2021. "Comparison of Economical and Technical Photovoltaic Hosting Capacity Limits in Distribution Networks," Energies, MDPI, vol. 14(9), pages 1-23, April.
    5. Ramadhani, F. & Hussain, M.A. & Mokhlis, H. & Hajimolana, S., 2017. "Optimization strategies for Solid Oxide Fuel Cell (SOFC) application: A literature survey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 460-484.
    6. Francesco Calise & Davide Capuano & Laura Vanoli, 2015. "Dynamic Simulation and Exergo-Economic Optimization of a Hybrid Solar–Geothermal Cogeneration Plant," Energies, MDPI, vol. 8(4), pages 1-41, April.
    7. Habibollahzade, Ali & Gholamian, Ehsan & Behzadi, Amirmohammad, 2019. "Multi-objective optimization and comparative performance analysis of hybrid biomass-based solid oxide fuel cell/solid oxide electrolyzer cell/gas turbine using different gasification agents," Applied Energy, Elsevier, vol. 233, pages 985-1002.
    8. You, Huailiang & Han, Jitian & Liu, Yang & Chen, Changnian & Ge, Yi, 2020. "4E analysis and multi-objective optimization of a micro poly-generation system based on SOFC/MGT/MED and organic steam ejector refrigerator," Energy, Elsevier, vol. 206(C).
    9. Kazemi, Shabnam & Nor, Mohamad Iskandr Mohamad & Teoh, Wen Hui, 2020. "Thermodynamic and economic investigation of an ionic liquid as a new proposed geothermal fluid in different organic Rankine cycles for energy production," Energy, Elsevier, vol. 193(C).
    10. Hosseinpour, Javad & Chitsaz, Ata & Eisavi, Beneta & Yari, Mortaza, 2018. "Investigation on performance of an integrated SOFC-Goswami system using wood gasification," Energy, Elsevier, vol. 148(C), pages 614-628.
    11. Roy, Dibyendu & Samanta, Samiran & Ghosh, Sudip, 2020. "Performance assessment of a biomass fuelled advanced hybrid power generation system," Renewable Energy, Elsevier, vol. 162(C), pages 639-661.
    12. Marenco-Porto, Carlos A. & Fierro, José J. & Nieto-Londoño, César & Lopera, Leonardo & Escudero-Atehortua, Ana & Giraldo, Mauricio & Jouhara, Hussam, 2023. "Potential savings in the cement industry using waste heat recovery technologies," Energy, Elsevier, vol. 279(C).
    13. Al-Rashed, Abdullah A.A.A. & Afrand, Masoud, 2021. "Multi-criteria exergoeconomic optimization for a combined gas turbine-supercritical CO2 plant with compressor intake cooling fueled by biogas from anaerobic digestion," Energy, Elsevier, vol. 223(C).
    14. Behzadi, Amirmohammad & Habibollahzade, Ali & Ahmadi, Pouria & Gholamian, Ehsan & Houshfar, Ehsan, 2019. "Multi-objective design optimization of a solar based system for electricity, cooling, and hydrogen production," Energy, Elsevier, vol. 169(C), pages 696-709.
    15. Shamoushaki, Moein & Fiaschi, Daniele & Manfrida, Giampaolo & Talluri, Lorenzo, 2022. "Energy, exergy, economic and environmental (4E) analyses of a geothermal power plant with NCGs reinjection," Energy, Elsevier, vol. 244(PA).
    16. Buonomano, Annamaria & Calise, Francesco & Palombo, Adolfo & Vicidomini, Maria, 2015. "Energy and economic analysis of geothermal–solar trigeneration systems: A case study for a hotel building in Ischia," Applied Energy, Elsevier, vol. 138(C), pages 224-241.
    17. Moein Shamoushaki & Mehdi Aliehyaei & Farhad Taghizadeh-Hesary, 2021. "Energy, Exergy, Exergoeconomic, and Exergoenvironmental Assessment of Flash-Binary Geothermal Combined Cooling, Heating and Power Cycle," Energies, MDPI, vol. 14(15), pages 1-24, July.
    18. Patil, Vikas R. & Biradar, Vijay Irappa & Shreyas, R. & Garg, Pardeep & Orosz, Matthew S. & Thirumalai, N.C., 2017. "Techno-economic comparison of solar organic Rankine cycle (ORC) and photovoltaic (PV) systems with energy storage," Renewable Energy, Elsevier, vol. 113(C), pages 1250-1260.
    19. Liang, Wenxing & Yu, Zeting & Liu, Wenjing & Ji, Shaobo, 2023. "Investigation of a novel near-zero emission poly-generation system based on biomass gasification and SOFC: A thermodynamic and exergoeconomic evaluation," Energy, Elsevier, vol. 282(C).
    20. Zhou, Zongming & Cao, Yan & Anqi, Ali E. & Zoghi, Mohammad & Habibi, Hamed & Rajhi, Ali A. & Alamri, Sagr, 2022. "Converting a geothermal-driven steam flash cycle into a high-performance polygeneration system by waste heat recovery: 3E analysis and Genetic-Fgoalattain optimization," Renewable Energy, Elsevier, vol. 186(C), pages 609-627.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:9:p:2665-:d:549637. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.