IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v180y2021icp1124-1147.html
   My bibliography  Save this article

Feasibility investigation of a novel geothermal-based integrated energy conversion system: Modified specific exergy costing (M-SPECO) method and optimization

Author

Listed:
  • Cao, Yan
  • Dhahad, Hayder A.
  • Togun, Hussein
  • Hussen, Hasanen M.
  • Anqi, Ali E.
  • Farouk, Naeim
  • Issakhov, Alibek

Abstract

The current work proposes and investigates a novel multigeneration system (power, hydrogen, and energy) comprising a flash-binary geothermal power plant, a modified Kalian cycle, a low-temperature electrolyzer, and a reverse osmosis desalination setup. Indeed, the whole system has been devised regarding the multi-heat recovery technique and smart management of products through a structural modification. To emphasize the ability of the newly designed system in this work, the data of the Sabalan geothermal plant in Iran has been used as a case study. Subsequently, the feasibility of the proposed multigeneration system has been examined by the modified specific exergy costing (M-SPECO) method, characterizing the exergetic and cost aspects of the system. The M-SPECO method is recognized as an energy level-based cost scrutiny technique to evaluate energy conversion systems. Accordingly, the sensitivity study through single and dual parametric analyses has been implemented, wherein separator 1 pressure was the main parameter. Likewise, the non-dominated sorting genetic algorithm-II (NSGA-II) method has been applied to optimize the calculations and reveal the optimum conditions and results. In this way, the achieved optimum exergy efficiency of the system was calculated as 47.25%, followed by a value of 7.66 $/GJ for the modified overall unit cost of products.

Suggested Citation

  • Cao, Yan & Dhahad, Hayder A. & Togun, Hussein & Hussen, Hasanen M. & Anqi, Ali E. & Farouk, Naeim & Issakhov, Alibek, 2021. "Feasibility investigation of a novel geothermal-based integrated energy conversion system: Modified specific exergy costing (M-SPECO) method and optimization," Renewable Energy, Elsevier, vol. 180(C), pages 1124-1147.
  • Handle: RePEc:eee:renene:v:180:y:2021:i:c:p:1124-1147
    DOI: 10.1016/j.renene.2021.08.075
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148121012416
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2021.08.075?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yu, Zeting & Su, Ruizhi & Feng, Chunyu, 2020. "Thermodynamic analysis and multi-objective optimization of a novel power generation system driven by geothermal energy," Energy, Elsevier, vol. 199(C).
    2. Ebadollahi, Mohammad & Rostamzadeh, Hadi & Pedram, Mona Zamani & Ghaebi, Hadi & Amidpour, Majid, 2019. "Proposal and assessment of a new geothermal-based multigeneration system for cooling, heating, power, and hydrogen production, using LNG cold energy recovery," Renewable Energy, Elsevier, vol. 135(C), pages 66-87.
    3. Suleman, F. & Dincer, I. & Agelin-Chaab, M., 2014. "Development of an integrated renewable energy system for multigeneration," Energy, Elsevier, vol. 78(C), pages 196-204.
    4. Cao, Yan & Habibi, Hamed & Zoghi, Mohammad & Raise, Amir, 2021. "Waste heat recovery of a combined regenerative gas turbine - recompression supercritical CO2 Brayton cycle driven by a hybrid solar-biomass heat source for multi-generation purpose: 4E analysis and pa," Energy, Elsevier, vol. 236(C).
    5. Nafey, A.S. & Sharaf, M.A., 2010. "Combined solar organic Rankine cycle with reverse osmosis desalination process: Energy, exergy, and cost evaluations," Renewable Energy, Elsevier, vol. 35(11), pages 2571-2580.
    6. Calise, Francesco & Cipollina, Andrea & Dentice d’Accadia, Massimo & Piacentino, Antonio, 2014. "A novel renewable polygeneration system for a small Mediterranean volcanic island for the combined production of energy and water: Dynamic simulation and economic assessment," Applied Energy, Elsevier, vol. 135(C), pages 675-693.
    7. Feili, Milad & Rostamzadeh, Hadi & Ghaebi, Hadi, 2020. "A new high-efficient cooling/power cogeneration system based on a double-flash geothermal power plant and a novel zeotropic bi-evaporator ejector refrigeration cycle," Renewable Energy, Elsevier, vol. 162(C), pages 2126-2152.
    8. Carlino, S. & Somma, R. & Troiano, A. & Di Giuseppe, M.G. & Troise, C. & De Natale, G., 2014. "The geothermal system of Ischia Island (southern Italy): Critical review and sustainability analysis of geothermal resource for electricity generation," Renewable Energy, Elsevier, vol. 62(C), pages 177-196.
    9. Akrami, Ehsan & Chitsaz, Ata & Nami, Hossein & Mahmoudi, S.M.S., 2017. "Energetic and exergoeconomic assessment of a multi-generation energy system based on indirect use of geothermal energy," Energy, Elsevier, vol. 124(C), pages 625-639.
    10. Bundschuh, Jochen & Ghaffour, Noreddine & Mahmoudi, Hacene & Goosen, Mattheus & Mushtaq, Shahbaz & Hoinkis, Jan, 2015. "Low-cost low-enthalpy geothermal heat for freshwater production: Innovative applications using thermal desalination processes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 196-206.
    11. Kanoğlu, Mehmet & Çengel, Yunus A, 1999. "Economic evaluation of geothermal power generation, heating, and cooling," Energy, Elsevier, vol. 24(6), pages 501-509.
    12. Mokarram, N. Hassani & Mosaffa, A.H., 2018. "A comparative study and optimization of enhanced integrated geothermal flash and Kalina cycles: A thermoeconomic assessment," Energy, Elsevier, vol. 162(C), pages 111-125.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Feili, Milad & Rostamzadeh, Hadi & Ghaebi, Hadi, 2022. "Thermo-mechanical energy level approach integrated with exergoeconomic optimization for realistic cost evaluation of a novel micro-CCHP system," Renewable Energy, Elsevier, vol. 190(C), pages 630-657.
    2. Hou, Rui & Zhang, Nachuan & Gao, Wei & Chen, Kang & Liu, Yongqiu, 2023. "Thermodynamic, environmental, and exergoeconomic feasibility analyses and optimization of biomass gasifier-solid oxide fuel cell boosting a doable-flash binary geothermal cycle; a novel trigeneration ," Energy, Elsevier, vol. 265(C).
    3. Zhou, Zongming & Cao, Yan & Anqi, Ali E. & Zoghi, Mohammad & Habibi, Hamed & Rajhi, Ali A. & Alamri, Sagr, 2022. "Converting a geothermal-driven steam flash cycle into a high-performance polygeneration system by waste heat recovery: 3E analysis and Genetic-Fgoalattain optimization," Renewable Energy, Elsevier, vol. 186(C), pages 609-627.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mahmoudan, Alireza & Samadof, Parviz & Hosseinzadeh, Siamak & Garcia, Davide Astiaso, 2021. "A multigeneration cascade system using ground-source energy with cold recovery: 3E analyses and multi-objective optimization," Energy, Elsevier, vol. 233(C).
    2. Jana, Kuntal & Ray, Avishek & Majoumerd, Mohammad Mansouri & Assadi, Mohsen & De, Sudipta, 2017. "Polygeneration as a future sustainable energy solution – A comprehensive review," Applied Energy, Elsevier, vol. 202(C), pages 88-111.
    3. Mustapha Mukhtar & Victor Adebayo & Nasser Yimen & Olusola Bamisile & Emmanuel Osei-Mensah & Humphrey Adun & Qinxiu Zhang & Gexin Luo, 2022. "Towards Global Cleaner Energy and Hydrogen Production: A Review and Application ORC Integrality with Multigeneration Systems," Sustainability, MDPI, vol. 14(9), pages 1-25, April.
    4. Hashemian, Nasim & Noorpoor, Alireza, 2022. "A geothermal-biomass powered multi-generation plant with freshwater and hydrogen generation options: Thermo-economic-environmental appraisals and multi-criteria optimization," Renewable Energy, Elsevier, vol. 198(C), pages 254-266.
    5. Calise, Francesco & de Notaristefani di Vastogirardi, Giulio & Dentice d'Accadia, Massimo & Vicidomini, Maria, 2018. "Simulation of polygeneration systems," Energy, Elsevier, vol. 163(C), pages 290-337.
    6. Zhang, Minglong & Chen, Hong & Zoghi, Mohammad & Habibi, Hamed, 2022. "Comparison between biogas and pure methane as the fuel of a polygeneration system including a regenerative gas turbine cycle and partial cooling supercritical CO2 Brayton cycle: 4E analysis and tri-ob," Energy, Elsevier, vol. 257(C).
    7. Zheng, Bobo & Xu, Jiuping & Ni, Ting & Li, Meihui, 2015. "Geothermal energy utilization trends from a technological paradigm perspective," Renewable Energy, Elsevier, vol. 77(C), pages 430-441.
    8. Uche, J. & Muzás, A. & Acevedo, L.E. & Usón, S. & Martínez, A. & Bayod, A.A., 2020. "Experimental tests to validate the simulation model of a Domestic Trigeneration Scheme with hybrid RESs and Desalting Techniques," Renewable Energy, Elsevier, vol. 155(C), pages 407-419.
    9. Modi, Anish & Bühler, Fabian & Andreasen, Jesper Graa & Haglind, Fredrik, 2017. "A review of solar energy based heat and power generation systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 1047-1064.
    10. Sheikh Muhammad Ali Haider & Tahir Abdul Hussain Ratlamwala & Khurram Kamal & Fahad Alqahtani & Mohammed Alkahtani & Emad Mohammad & Moath Alatefi, 2023. "Energy and Exergy Analysis of a Geothermal Sourced Multigeneration System for Sustainable City," Energies, MDPI, vol. 16(4), pages 1-19, February.
    11. Zhou, Jincheng & Hai, Tao & Ali, Masood Ashraf & Shamseldin, Mohamed A. & Almojil, Sattam Fahad & Almohana, Abdulaziz Ibrahim & Alali, Abdulrhman Fahmi, 2023. "Waste heat recovery of a wind turbine for poly-generation purpose: Feasibility analysis, environmental impact assessment, and parametric optimization," Energy, Elsevier, vol. 263(PD).
    12. Kasaeian, Alibakhsh & Bellos, Evangelos & Shamaeizadeh, Armin & Tzivanidis, Christos, 2020. "Solar-driven polygeneration systems: Recent progress and outlook," Applied Energy, Elsevier, vol. 264(C).
    13. Mohammadi, Kasra & Khanmohammadi, Saber & Khorasanizadeh, Hossein & Powell, Kody, 2020. "A comprehensive review of solar only and hybrid solar driven multigeneration systems: Classifications, benefits, design and prospective," Applied Energy, Elsevier, vol. 268(C).
    14. Shamsi, Mohammad & Rooeentan, Saeed & karami, Behtash & Elyasi Gomari, Kamal & Naseri, Masoud & Bonyadi, Mohammad, 2023. "Design and thermodynamic analysis of a novel structure utilizing coke oven gas for LNG and power cogeneration," Energy, Elsevier, vol. 277(C).
    15. Loni, Reyhaneh & Mahian, Omid & Markides, Christos N. & Bellos, Evangelos & le Roux, Willem G. & Kasaeian, Ailbakhsh & Najafi, Gholamhassan & Rajaee, Fatemeh, 2021. "A review of solar-driven organic Rankine cycles: Recent challenges and future outlook," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    16. Shengjun, Zhang & Huaixin, Wang & Tao, Guo, 2011. "Performance comparison and parametric optimization of subcritical Organic Rankine Cycle (ORC) and transcritical power cycle system for low-temperature geothermal power generation," Applied Energy, Elsevier, vol. 88(8), pages 2740-2754, August.
    17. DeLovato, Nicolas & Sundarnath, Kavin & Cvijovic, Lazar & Kota, Krishna & Kuravi, Sarada, 2019. "A review of heat recovery applications for solar and geothermal power plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    18. Papapostolou, Christiana M. & Kondili, Emilia M. & Zafirakis, Dimitris P. & Tzanes, Georgios T., 2020. "Sustainable water supply systems for the islands: The integration with the energy problem," Renewable Energy, Elsevier, vol. 146(C), pages 2577-2588.
    19. Calise, Francesco & Cipollina, Andrea & Dentice d’Accadia, Massimo & Piacentino, Antonio, 2014. "A novel renewable polygeneration system for a small Mediterranean volcanic island for the combined production of energy and water: Dynamic simulation and economic assessment," Applied Energy, Elsevier, vol. 135(C), pages 675-693.
    20. Calise, Francesco & Dentice d'Accadia, Massimo & Libertini, Luigi & Quiriti, Edoardo & Vicidomini, Maria, 2017. "A novel tool for thermoeconomic analysis and optimization of trigeneration systems: A case study for a hospital building in Italy," Energy, Elsevier, vol. 126(C), pages 64-87.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:180:y:2021:i:c:p:1124-1147. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.