IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v210y2025ics1364032124009110.html
   My bibliography  Save this article

Exploring geothermal energy based systems: Review from basics to smart systems

Author

Listed:
  • Anya, Belka
  • Mohammadpourfard, Mousa
  • Akkurt, Gülden Gökçen
  • Mohammadi-Ivatloo, Behnam

Abstract

Most of the energy demand is currently supplied from fossil fuels, which leads to the accumulation of greenhouse gases and air pollution. A sustainable future can be created globally through the efficient use of renewable energy sources. These sources include wind, solar, geothermal, biomass, and more. Geothermal energy can meet the energy needs of the future as a clean and reliable source and stands out due to certain distinctive features among renewable energy sources. Unlike other renewable energy sources, geothermal energy is not dependent on time or weather, making it a reliable and continuous energy supply. Additionally, it has a lower environmental impact. This review examines the development of geothermal energy systems and their integration into smart technologies, highlighting the potential of geothermal energy for smart energy systems. The focus is on integrating smart systems into geothermal-based setups to enhance efficiency and analyze the state-of-the-art technologies of such systems. Geothermal-based systems can be classified as single generation, co-generation, multigeneration, smart energy systems, and energy hubs. Consequent to examining systems, it has been concluded that geothermal systems have a huge potential, but unfortunately, not all of them are used due to some difficulties. Its development will occur faster, and its share in the renewable energy sector will grow with smart system integration.

Suggested Citation

  • Anya, Belka & Mohammadpourfard, Mousa & Akkurt, Gülden Gökçen & Mohammadi-Ivatloo, Behnam, 2025. "Exploring geothermal energy based systems: Review from basics to smart systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 210(C).
  • Handle: RePEc:eee:rensus:v:210:y:2025:i:c:s1364032124009110
    DOI: 10.1016/j.rser.2024.115185
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032124009110
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2024.115185?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jianhua Liu & Yanghuiqin Ding & Hao Liu & Liying Zheng & Xiaoyuan Wang & Yuezhao Zhu, 2025. "Dynamic Heat Transfer Modeling and Validation of Super-Long Flexible Thermosyphons for Shallow Geothermal Applications," Energies, MDPI, vol. 18(2), pages 1-16, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:210:y:2025:i:c:s1364032124009110. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.