IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i10p3607-d815888.html
   My bibliography  Save this article

Virtual Power Plants Optimization Issue: A Comprehensive Review on Methods, Solutions, and Prospects

Author

Listed:
  • Wafa Nafkha-Tayari

    (Laboratory of Information and Systems (UMR CNRS 7020 LIS), Aix Marseille University, 13397 Marseille, France)

  • Seifeddine Ben Elghali

    (Laboratory of Information and Systems (UMR CNRS 7020 LIS), Aix Marseille University, 13397 Marseille, France)

  • Ehsan Heydarian-Forushani

    (Department of Electrical and Computer Engineering, Qom University of Technology, Qom 1519-37195, Iran)

  • Mohamed Benbouzid

    (Institut de Recherche Dupuy de Lôme (UMR CNRS 6027 IRDL), University of Brest, 29238 Brest, France
    Logistics Engineering College, Shanghai 201306, China)

Abstract

Recently, the integration of distributed generation and energy systems has been associated with new approaches to plant operations. As a result, it is becoming increasingly important to improve management skills related to distributed generation and demand aggregation through different types of virtual power plants (VPPs). It is also important to leverage their ability to participate in electricity markets to maximize operating profits. The present study focuses on VPP concepts, its different potential services, various control methodologies, distinct optimization approaches, and some practical implemented real cases. To this end, a comprehensive review of the most recent scientific literature is conducted. The paper concludes with remained challenges and future trends in the topic.

Suggested Citation

  • Wafa Nafkha-Tayari & Seifeddine Ben Elghali & Ehsan Heydarian-Forushani & Mohamed Benbouzid, 2022. "Virtual Power Plants Optimization Issue: A Comprehensive Review on Methods, Solutions, and Prospects," Energies, MDPI, vol. 15(10), pages 1-20, May.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:10:p:3607-:d:815888
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/10/3607/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/10/3607/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Niknam, Taher & Azizipanah-Abarghooee, Rasoul & Narimani, Mohammad Rasoul, 2012. "An efficient scenario-based stochastic programming framework for multi-objective optimal micro-grid operation," Applied Energy, Elsevier, vol. 99(C), pages 455-470.
    2. Zamani, Ali Ghahgharaee & Zakariazadeh, Alireza & Jadid, Shahram, 2016. "Day-ahead resource scheduling of a renewable energy based virtual power plant," Applied Energy, Elsevier, vol. 169(C), pages 324-340.
    3. Yu, Mengmeng & Hong, Seung Ho, 2017. "Incentive-based demand response considering hierarchical electricity market: A Stackelberg game approach," Applied Energy, Elsevier, vol. 203(C), pages 267-279.
    4. Dimitris Bertsimas & Melvyn Sim, 2004. "The Price of Robustness," Operations Research, INFORMS, vol. 52(1), pages 35-53, February.
    5. Rakkyung Ko & Daeyoung Kang & Sung-Kwan Joo, 2019. "Mixed Integer Quadratic Programming Based Scheduling Methods for Day-Ahead Bidding and Intra-Day Operation of Virtual Power Plant," Energies, MDPI, vol. 12(8), pages 1-16, April.
    6. Faria, Pedro & Soares, Tiago & Vale, Zita & Morais, Hugo, 2014. "Distributed generation and demand response dispatch for a virtual power player energy and reserve provision," Renewable Energy, Elsevier, vol. 66(C), pages 686-695.
    7. Shabanzadeh, Morteza & Sheikh-El-Eslami, Mohammad-Kazem & Haghifam, Mahmoud-Reza, 2016. "A medium-term coalition-forming model of heterogeneous DERs for a commercial virtual power plant," Applied Energy, Elsevier, vol. 169(C), pages 663-681.
    8. Tajeddini, Mohammad Amin & Rahimi-Kian, Ashkan & Soroudi, Alireza, 2014. "Risk averse optimal operation of a virtual power plant using two stage stochastic programming," Energy, Elsevier, vol. 73(C), pages 958-967.
    9. Baziar, Aliasghar & Kavousi-Fard, Abdollah, 2013. "Considering uncertainty in the optimal energy management of renewable micro-grids including storage devices," Renewable Energy, Elsevier, vol. 59(C), pages 158-166.
    10. Rahmani-Dabbagh, Saeed & Sheikh-El-Eslami, Mohammad Kazem, 2016. "A profit sharing scheme for distributed energy resources integrated into a virtual power plant," Applied Energy, Elsevier, vol. 184(C), pages 313-328.
    11. Wei, Congying & Xu, Jian & Liao, Siyang & Sun, Yuanzhang & Jiang, Yibo & Ke, Deping & Zhang, Zhen & Wang, Jing, 2018. "A bi-level scheduling model for virtual power plants with aggregated thermostatically controlled loads and renewable energy," Applied Energy, Elsevier, vol. 224(C), pages 659-670.
    12. Mashlakov, Aleksei & Pournaras, Evangelos & Nardelli, Pedro H.J. & Honkapuro, Samuli, 2021. "Decentralized cooperative scheduling of prosumer flexibility under forecast uncertainties," Applied Energy, Elsevier, vol. 290(C).
    13. Zhou, Huan & Fan, Shuai & Wu, Qing & Dong, Lianxin & Li, Zuyi & He, Guangyu, 2021. "Stimulus-response control strategy based on autonomous decentralized system theory for exploitation of flexibility by virtual power plant," Applied Energy, Elsevier, vol. 285(C).
    14. Wozabal, David & Rameseder, Gunther, 2020. "Optimal bidding of a virtual power plant on the Spanish day-ahead and intraday market for electricity," European Journal of Operational Research, Elsevier, vol. 280(2), pages 639-655.
    15. Pandžić, Hrvoje & Morales, Juan M. & Conejo, Antonio J. & Kuzle, Igor, 2013. "Offering model for a virtual power plant based on stochastic programming," Applied Energy, Elsevier, vol. 105(C), pages 282-292.
    16. Ju, Liwei & Zhao, Rui & Tan, Qinliang & Lu, Yan & Tan, Qingkun & Wang, Wei, 2019. "A multi-objective robust scheduling model and solution algorithm for a novel virtual power plant connected with power-to-gas and gas storage tank considering uncertainty and demand response," Applied Energy, Elsevier, vol. 250(C), pages 1336-1355.
    17. Chi Cao & Jun Xie & Dong Yue & Chongxin Huang & Jixiang Wang & Shuyang Xu & Xingying Chen, 2017. "Distributed Economic Dispatch of Virtual Power Plant under a Non-Ideal Communication Network," Energies, MDPI, vol. 10(2), pages 1-18, February.
    18. Hao Bai & Shihong Miao & Xiaohong Ran & Chang Ye, 2015. "Optimal Dispatch Strategy of a Virtual Power Plant Containing Battery Switch Stations in a Unified Electricity Market," Energies, MDPI, vol. 8(3), pages 1-22, March.
    19. Tabatabaee, Sajad & Mortazavi, Seyed Saeedallah & Niknam, Taher, 2016. "Stochastic energy management of renewable micro-grids in the correlated environment using unscented transformation," Energy, Elsevier, vol. 109(C), pages 365-377.
    20. Jiakai Hu & Chuanwen Jiang & Yangyang Liu, 2019. "Short-Term Bidding Strategy for a Price-Maker Virtual Power Plant Based on Interval Optimization," Energies, MDPI, vol. 12(19), pages 1-22, September.
    21. Hadayeghparast, Shahrzad & SoltaniNejad Farsangi, Alireza & Shayanfar, Heidarali, 2019. "Day-ahead stochastic multi-objective economic/emission operational scheduling of a large scale virtual power plant," Energy, Elsevier, vol. 172(C), pages 630-646.
    22. Kasaei, Mohammad Javad & Gandomkar, Majid & Nikoukar, Javad, 2017. "Optimal management of renewable energy sources by virtual power plant," Renewable Energy, Elsevier, vol. 114(PB), pages 1180-1188.
    23. Mahmud, Khizir & Khan, Behram & Ravishankar, Jayashri & Ahmadi, Abdollah & Siano, Pierluigi, 2020. "An internet of energy framework with distributed energy resources, prosumers and small-scale virtual power plants: An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 127(C).
    24. Antonio J. Conejo & Miguel Carrión & Juan M. Morales, 2010. "Decision Making Under Uncertainty in Electricity Markets," International Series in Operations Research and Management Science, Springer, number 978-1-4419-7421-1, March.
    25. Wang, Han & Riaz, Shariq & Mancarella, Pierluigi, 2020. "Integrated techno-economic modeling, flexibility analysis, and business case assessment of an urban virtual power plant with multi-market co-optimization," Applied Energy, Elsevier, vol. 259(C).
    26. Kong, Xiangyu & Xiao, Jie & Wang, Chengshan & Cui, Kai & Jin, Qiang & Kong, Deqian, 2019. "Bi-level multi-time scale scheduling method based on bidding for multi-operator virtual power plant," Applied Energy, Elsevier, vol. 249(C), pages 178-189.
    27. Tascikaraoglu, A. & Erdinc, O. & Uzunoglu, M. & Karakas, A., 2014. "An adaptive load dispatching and forecasting strategy for a virtual power plant including renewable energy conversion units," Applied Energy, Elsevier, vol. 119(C), pages 445-453.
    28. Zuoyu Liu & Weimin Zheng & Feng Qi & Lei Wang & Bo Zou & Fushuan Wen & You Xue, 2018. "Optimal Dispatch of a Virtual Power Plant Considering Demand Response and Carbon Trading," Energies, MDPI, vol. 11(6), pages 1-19, June.
    29. Dodiek Ika Candra & Kilian Hartmann & Michael Nelles, 2018. "Economic Optimal Implementation of Virtual Power Plants in the German Power Market," Energies, MDPI, vol. 11(9), pages 1-24, September.
    30. Pandžić, Hrvoje & Kuzle, Igor & Capuder, Tomislav, 2013. "Virtual power plant mid-term dispatch optimization," Applied Energy, Elsevier, vol. 101(C), pages 134-141.
    31. Biswas, M.A. Rafe & Robinson, Melvin D. & Fumo, Nelson, 2016. "Prediction of residential building energy consumption: A neural network approach," Energy, Elsevier, vol. 117(P1), pages 84-92.
    32. Dominguez, R. & Baringo, L. & Conejo, A.J., 2012. "Optimal offering strategy for a concentrating solar power plant," Applied Energy, Elsevier, vol. 98(C), pages 316-325.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Francesco Gulotta & Edoardo Daccò & Alessandro Bosisio & Davide Falabretti, 2023. "Opening of Ancillary Service Markets to Distributed Energy Resources: A Review," Energies, MDPI, vol. 16(6), pages 1-25, March.
    2. Wadim Strielkowski & Andrey Vlasov & Kirill Selivanov & Konstantin Muraviev & Vadim Shakhnov, 2023. "Prospects and Challenges of the Machine Learning and Data-Driven Methods for the Predictive Analysis of Power Systems: A Review," Energies, MDPI, vol. 16(10), pages 1-31, May.
    3. Trinadh Pamulapati & Muhammed Cavus & Ishioma Odigwe & Adib Allahham & Sara Walker & Damian Giaouris, 2022. "A Review of Microgrid Energy Management Strategies from the Energy Trilemma Perspective," Energies, MDPI, vol. 16(1), pages 1-34, December.
    4. Pandey, Anubhav Kumar & Jadoun, Vinay Kumar & Jayalakshmi, N.S. & Malik, Hasmat & García Márquez, Fausto Pedro, 2024. "Multi-objective price based flexible reserve scheduling of virtual power plant," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
    5. Zahid Ullah & Arshad & Jawad Ahmad, 2022. "The Development of a Cross-Border Energy Trade Cooperation Model of Interconnected Virtual Power Plants Using Bilateral Contracts," Energies, MDPI, vol. 15(21), pages 1-16, November.
    6. Yang, Yulong & Zhao, Yang & Yan, Gangui & Mu, Gang & Chen, Zhe, 2024. "Real time aggregation control of P2H loads in a virtual power plant based on a multi-period stackelberg game," Energy, Elsevier, vol. 303(C).
    7. Justin Ugwu & Kenneth C. Odo & Chibuike Peter Ohanu & Jorge García & Ramy Georgious, 2022. "Comprehensive Review of Renewable Energy Communication Modeling for Smart Systems," Energies, MDPI, vol. 16(1), pages 1-28, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Naval, Natalia & Yusta, Jose M., 2021. "Virtual power plant models and electricity markets - A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    2. Mahmud, Khizir & Khan, Behram & Ravishankar, Jayashri & Ahmadi, Abdollah & Siano, Pierluigi, 2020. "An internet of energy framework with distributed energy resources, prosumers and small-scale virtual power plants: An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 127(C).
    3. Mohammad Mohammadi Roozbehani & Ehsan Heydarian-Forushani & Saeed Hasanzadeh & Seifeddine Ben Elghali, 2022. "Virtual Power Plant Operational Strategies: Models, Markets, Optimization, Challenges, and Opportunities," Sustainability, MDPI, vol. 14(19), pages 1-23, September.
    4. Amit Kumer Podder & Sayemul Islam & Nallapaneni Manoj Kumar & Aneesh A. Chand & Pulivarthi Nageswara Rao & Kushal A. Prasad & T. Logeswaran & Kabir A. Mamun, 2020. "Systematic Categorization of Optimization Strategies for Virtual Power Plants," Energies, MDPI, vol. 13(23), pages 1-46, November.
    5. Nosratabadi, Seyyed Mostafa & Hooshmand, Rahmat-Allah & Gholipour, Eskandar, 2017. "A comprehensive review on microgrid and virtual power plant concepts employed for distributed energy resources scheduling in power systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 341-363.
    6. Yu, Songyuan & Fang, Fang & Liu, Yajuan & Liu, Jizhen, 2019. "Uncertainties of virtual power plant: Problems and countermeasures," Applied Energy, Elsevier, vol. 239(C), pages 454-470.
    7. Natalia Naval & Jose M. Yusta, 2020. "Water-Energy Management for Demand Charges and Energy Cost Optimization of a Pumping Stations System under a Renewable Virtual Power Plant Model," Energies, MDPI, vol. 13(11), pages 1-21, June.
    8. Moreno, Blanca & Díaz, Guzmán, 2019. "The impact of virtual power plant technology composition on wholesale electricity prices: A comparative study of some European Union electricity markets," Renewable and Sustainable Energy Reviews, Elsevier, vol. 99(C), pages 100-108.
    9. Liwei Ju & Peng Li & Qinliang Tan & Zhongfu Tan & GejiriFu De, 2018. "A CVaR-Robust Risk Aversion Scheduling Model for Virtual Power Plants Connected with Wind-Photovoltaic-Hydropower-Energy Storage Systems, Conventional Gas Turbines and Incentive-Based Demand Responses," Energies, MDPI, vol. 11(11), pages 1-28, October.
    10. Hadayeghparast, Shahrzad & SoltaniNejad Farsangi, Alireza & Shayanfar, Heidarali, 2019. "Day-ahead stochastic multi-objective economic/emission operational scheduling of a large scale virtual power plant," Energy, Elsevier, vol. 172(C), pages 630-646.
    11. Li, Qiang & Wei, Fanchao & Zhou, Yongcheng & Li, Jiajia & Zhou, Guowen & Wang, Zhonghao & Liu, Jinfu & Yan, Peigang & Yu, Daren, 2023. "A scheduling framework for VPP considering multiple uncertainties and flexible resources," Energy, Elsevier, vol. 282(C).
    12. Wei, Congying & Xu, Jian & Liao, Siyang & Sun, Yuanzhang & Jiang, Yibo & Ke, Deping & Zhang, Zhen & Wang, Jing, 2018. "A bi-level scheduling model for virtual power plants with aggregated thermostatically controlled loads and renewable energy," Applied Energy, Elsevier, vol. 224(C), pages 659-670.
    13. Anubhav Kumar Pandey & Vinay Kumar Jadoun & Jayalakshmi N. Sabhahit, 2022. "Real-Time Peak Valley Pricing Based Multi-Objective Optimal Scheduling of a Virtual Power Plant Considering Renewable Resources," Energies, MDPI, vol. 15(16), pages 1-30, August.
    14. Jing Qiu & Junhua Zhao & Dongxiao Wang & Yu Zheng, 2017. "Two-Stage Coordinated Operational Strategy for Distributed Energy Resources Considering Wind Power Curtailment Penalty Cost," Energies, MDPI, vol. 10(7), pages 1-19, July.
    15. Naval, Natalia & Sánchez, Raul & Yusta, Jose M., 2020. "A virtual power plant optimal dispatch model with large and small-scale distributed renewable generation," Renewable Energy, Elsevier, vol. 151(C), pages 57-69.
    16. Bhuiyan, Erphan A. & Hossain, Md. Zahid & Muyeen, S.M. & Fahim, Shahriar Rahman & Sarker, Subrata K. & Das, Sajal K., 2021. "Towards next generation virtual power plant: Technology review and frameworks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    17. Zhou, Kaile & Peng, Ning & Yin, Hui & Hu, Rong, 2023. "Urban virtual power plant operation optimization with incentive-based demand response," Energy, Elsevier, vol. 282(C).
    18. Zeyi Wang & Yao Wang & Li Xie & Dan Pang & Hao Shi & Hua Zheng, 2024. "Load Frequency Control of Multiarea Power Systems with Virtual Power Plants," Energies, MDPI, vol. 17(15), pages 1-10, July.
    19. Nosratabadi, Seyyed Mostafa & Hooshmand, Rahmat-Allah & Gholipour, Eskandar, 2016. "Stochastic profit-based scheduling of industrial virtual power plant using the best demand response strategy," Applied Energy, Elsevier, vol. 164(C), pages 590-606.
    20. Dong, Lianxin & Fan, Shuai & Wang, Zhihua & Xiao, Jucheng & Zhou, Huan & Li, Zuyi & He, Guangyu, 2021. "An adaptive decentralized economic dispatch method for virtual power plant," Applied Energy, Elsevier, vol. 300(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:10:p:3607-:d:815888. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.