IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v10y2017i2p235-d90551.html
   My bibliography  Save this article

Distributed Economic Dispatch of Virtual Power Plant under a Non-Ideal Communication Network

Author

Listed:
  • Chi Cao

    (College of Automation, Nanjing University of Posts and Telecommunications, Nanjing 210023, China)

  • Jun Xie

    (College of Automation, Nanjing University of Posts and Telecommunications, Nanjing 210023, China)

  • Dong Yue

    (College of Automation, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
    Institute of Advanced Technology, Nanjing University of Posts and Telecommunications, Nanjing 210023, China)

  • Chongxin Huang

    (Institute of Advanced Technology, Nanjing University of Posts and Telecommunications, Nanjing 210023, China)

  • Jixiang Wang

    (College of Energy and Electrical Engineering, Hohai University, Nanjing 210098, China)

  • Shuyang Xu

    (College of Energy and Electrical Engineering, Hohai University, Nanjing 210098, China)

  • Xingying Chen

    (College of Energy and Electrical Engineering, Hohai University, Nanjing 210098, China)

Abstract

A virtual power plant (VPP) is aimed to integrate distributed energy resources (DERs). To solve the VPP economic dispatch (VPED) problem, the power supply-demand balance, power transmission constraints, and power output constraints of each DER must be considered. Meanwhile, the impacts of communication time delays, channel noises, and the time-varying topology on the communication networks cannot be ignored. In this paper, a VPED model is established and a distributed primal-dual sub-gradient method (DPDSM) is employed to address the presented VPED model. Compared with the traditional centralized dispatch, the distributed dispatch has the advantages of lower communication costs and stronger system robustness, etc. Simulations are realized in the modified IEEE-34 and IEEE-123 bus test VPP systems and the results indicate that the VPED strategy via DPDSM has the superiority of better convergence, more economic profits, and stronger system stability.

Suggested Citation

  • Chi Cao & Jun Xie & Dong Yue & Chongxin Huang & Jixiang Wang & Shuyang Xu & Xingying Chen, 2017. "Distributed Economic Dispatch of Virtual Power Plant under a Non-Ideal Communication Network," Energies, MDPI, vol. 10(2), pages 1-18, February.
  • Handle: RePEc:gam:jeners:v:10:y:2017:i:2:p:235-:d:90551
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/10/2/235/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/10/2/235/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Furquan Nadeem & Mohd Asim Aftab & S.M. Suhail Hussain & Ikbal Ali & Prashant Kumar Tiwari & Arup Kumar Goswami & Taha Selim Ustun, 2019. "Virtual Power Plant Management in Smart Grids with XMPP Based IEC 61850 Communication," Energies, MDPI, vol. 12(12), pages 1-20, June.
    2. Jingmin Wang & Wenhai Yang & Huaxin Cheng & Lingyu Huang & Yajing Gao, 2017. "The Optimal Configuration Scheme of the Virtual Power Plant Considering Benefits and Risks of Investors," Energies, MDPI, vol. 10(7), pages 1-12, July.
    3. Buxiang Zhou & Jiale Wu & Tianlei Zang & Yating Cai & Binjie Sun & Yiwei Qiu, 2023. "Emergency Dispatch Approach for Power Systems with Hybrid Energy Considering Thermal Power Unit Ramping," Energies, MDPI, vol. 16(10), pages 1-25, May.
    4. Jun Xie & Chi Cao, 2017. "Non-Convex Economic Dispatch of a Virtual Power Plant via a Distributed Randomized Gradient-Free Algorithm," Energies, MDPI, vol. 10(7), pages 1-12, July.
    5. Jiaqi Liu & Hongji Hu & Samson S. Yu & Hieu Trinh, 2023. "Virtual Power Plant with Renewable Energy Sources and Energy Storage Systems for Sustainable Power Grid-Formation, Control Techniques and Demand Response," Energies, MDPI, vol. 16(9), pages 1-28, April.
    6. Wafa Nafkha-Tayari & Seifeddine Ben Elghali & Ehsan Heydarian-Forushani & Mohamed Benbouzid, 2022. "Virtual Power Plants Optimization Issue: A Comprehensive Review on Methods, Solutions, and Prospects," Energies, MDPI, vol. 15(10), pages 1-20, May.
    7. Jing Qiu & Junhua Zhao & Dongxiao Wang & Yu Zheng, 2017. "Two-Stage Coordinated Operational Strategy for Distributed Energy Resources Considering Wind Power Curtailment Penalty Cost," Energies, MDPI, vol. 10(7), pages 1-19, July.
    8. Liwei Ju & Peng Li & Qinliang Tan & Zhongfu Tan & GejiriFu De, 2018. "A CVaR-Robust Risk Aversion Scheduling Model for Virtual Power Plants Connected with Wind-Photovoltaic-Hydropower-Energy Storage Systems, Conventional Gas Turbines and Incentive-Based Demand Responses," Energies, MDPI, vol. 11(11), pages 1-28, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:10:y:2017:i:2:p:235-:d:90551. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.