IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i18p7772-d416422.html
   My bibliography  Save this article

Hybrid CHP/Geothermal Borehole System for Multi-Family Building in Heating Dominated Climates

Author

Listed:
  • Saeed Alqaed

    (Mechanical Engineering Department, College of Engineering, Najran University, Najran 61441, Saudi Arabia)

  • Jawed Mustafa

    (Mechanical Engineering Department, College of Engineering, Najran University, Najran 61441, Saudi Arabia)

  • Kevin P. Hallinan

    (Department of Mechanical & Aerospace Engineering, University of Dayton, Dayton, OH 45469-0238, USA)

  • Rodwan Elhashmi

    (Department of Mechanical & Aerospace Engineering, University of Dayton, Dayton, OH 45469-0238, USA)

Abstract

A conventional ground-coupled heat pump (GCHP) can be used to supplement heat rejection or extraction, creating a hybrid system that is cost-effective for certainly unbalanced climes. This research explores the possibility for a hybrid GCHP to use excess heat from a combined heat power (CHP) unit of natural gas in a heating-dominated environment for smart cities. A design for a multi-family residential building is considered, with a CHP sized to meet the average electrical load of the building. The constant electric output of the CHP is used directly, stored for later use in a battery, or sold back to the grid. Part of the thermal output provides the building with hot water, and the rest is channeled into the GCHP borehole array to support the building’s large heating needs. Consumption and weather data are used to predict hourly loads over a year for a specific multi-family residence. Simulations of the energies exchanged between system components are performed, and a cost model is minimized over CHP size, battery storage capacity, number of boreholes, and depth of the borehole. Results indicate a greater cost advantage for the design in a severely heated (Canada) climate than in a moderately imbalanced (Ohio) climate.

Suggested Citation

  • Saeed Alqaed & Jawed Mustafa & Kevin P. Hallinan & Rodwan Elhashmi, 2020. "Hybrid CHP/Geothermal Borehole System for Multi-Family Building in Heating Dominated Climates," Sustainability, MDPI, vol. 12(18), pages 1-16, September.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:18:p:7772-:d:416422
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/18/7772/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/18/7772/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yang, H. & Cui, P. & Fang, Z., 2010. "Vertical-borehole ground-coupled heat pumps: A review of models and systems," Applied Energy, Elsevier, vol. 87(1), pages 16-27, January.
    2. Levinson, Arik & Niemann, Scott, 2004. "Energy use by apartment tenants when landlords pay for utilities," Resource and Energy Economics, Elsevier, vol. 26(1), pages 51-75, March.
    3. Xuedan Zhang & Tiantian Zhang & Bingxi Li & Yiqiang Jiang, 2019. "Comparison of Four Methods for Borehole Heat Exchanger Sizing Subject to Thermal Response Test Parameter Estimation," Energies, MDPI, vol. 12(21), pages 1-30, October.
    4. Elhashmi, Rodwan & Hallinan, Kevin P. & Chiasson, Andrew D., 2020. "Low-energy opportunity for multi-family residences: A review and simulation-based study of a solar borehole thermal energy storage system," Energy, Elsevier, vol. 204(C).
    5. Yang, Weibo & Zhang, Heng & Liang, Xingfu, 2018. "Experimental performance evaluation and parametric study of a solar-ground source heat pump system operated in heating modes," Energy, Elsevier, vol. 149(C), pages 173-189.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pastore, Lorenzo Mario & Lo Basso, Gianluigi & de Santoli, Livio, 2023. "How national decarbonisation scenarios can affect building refurbishment strategies," Energy, Elsevier, vol. 283(C).
    2. Anya, Belka & Mohammadpourfard, Mousa & Akkurt, Gülden Gökçen & Mohammadi-Ivatloo, Behnam, 2025. "Exploring geothermal energy based systems: Review from basics to smart systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 210(C).
    3. Rabah Ismaen & Tarek Y. ElMekkawy & Shaligram Pokharel & Adel Elomri & Mohammed Al-Salem, 2022. "Solar Technology and District Cooling System in a Hot Climate Regions: Optimal Configuration and Technology Selection," Energies, MDPI, vol. 15(7), pages 1-24, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ahmadfard, Mohammadamin & Baniasadi, Ehsan, 2025. "Borehole thermal energy storage systems: A comprehensive review using bibliometric and qualitative tools," Applied Energy, Elsevier, vol. 387(C).
    2. Wang, Xiaozhe & Zhang, Hao & Cui, Lin & Wang, Jingying & Lee, Chunhian & Zhu, Xiaoxuan & Dong, Yong, 2024. "Borehole thermal energy storage for building heating application: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 203(C).
    3. Kumar, Satish & Murugesan, Krishnan, 2024. "Experimental investigation of thermal performance of ground source heat pump system for summer and monsoon seasons of Himalayan region of India: A case study," Renewable Energy, Elsevier, vol. 237(PC).
    4. Zhao, Zilong & Lin, Yu-Feng & Stumpf, Andrew & Wang, Xinlei, 2022. "Assessing impacts of groundwater on geothermal heat exchangers: A review of methodology and modeling," Renewable Energy, Elsevier, vol. 190(C), pages 121-147.
    5. Cao, Jingyu & Zheng, Ling & Peng, Jinqing & Wang, Wenjie & Leung, Michael K.H. & Zheng, Zhanying & Hu, Mingke & Wang, Qiliang & Cai, Jingyong & Pei, Gang & Ji, Jie, 2023. "Advances in coupled use of renewable energy sources for performance enhancement of vapour compression heat pump: A systematic review of applications to buildings," Applied Energy, Elsevier, vol. 332(C).
    6. Yi, Gaowei & Zhang, Da & Zhang, Wenlong & Li, Yan & Gong, Liang, 2025. "Exploiting seafloor hydrothermal energy through optimized closed-loop heat extraction," Renewable Energy, Elsevier, vol. 242(C).
    7. Hemmatabady, Hoofar & Welsch, Bastian & Formhals, Julian & Sass, Ingo, 2022. "AI-based enviro-economic optimization of solar-coupled and standalone geothermal systems for heating and cooling," Applied Energy, Elsevier, vol. 311(C).
    8. Robert Poole & Randal Verbrugge, 2007. "Explaining the Rent-OER Inflation Divergence, 1999-2006," Working Papers 410, U.S. Bureau of Labor Statistics.
    9. Zhang, Linfeng & Zhang, Quan & Huang, Gongsheng & Du, Yaxing, 2014. "A p(t)-linear average method to estimate the thermal parameters of the borehole heat exchangers for in situ thermal response test," Applied Energy, Elsevier, vol. 131(C), pages 211-221.
    10. Nguyen, Hiep V. & Law, Ying Lam E. & Alavy, Masih & Walsh, Philip R. & Leong, Wey H. & Dworkin, Seth B., 2014. "An analysis of the factors affecting hybrid ground-source heat pump installation potential in North America," Applied Energy, Elsevier, vol. 125(C), pages 28-38.
    11. Petrov, Ivan & Ryan, Lisa, 2021. "The landlord-tenant problem and energy efficiency in the residential rental market," Energy Policy, Elsevier, vol. 157(C).
    12. Gao, Jiajia & Li, Anbang & Xu, Xinhua & Gang, Wenjie & Yan, Tian, 2018. "Ground heat exchangers: Applications, technology integration and potentials for zero energy buildings," Renewable Energy, Elsevier, vol. 128(PA), pages 337-349.
    13. Li, Biao & Han, Zongwei & Bai, Chenguang & Hu, Honghao, 2019. "The influence of soil thermal properties on the operation performance on ground source heat pump system," Renewable Energy, Elsevier, vol. 141(C), pages 903-913.
    14. Ali Dargahi & Khezr Sanjani & Morteza Nazari-Heris & Behnam Mohammadi-Ivatloo & Sajjad Tohidi & Mousa Marzband, 2020. "Scheduling of Air Conditioning and Thermal Energy Storage Systems Considering Demand Response Programs," Sustainability, MDPI, vol. 12(18), pages 1-13, September.
    15. Shangyuan Chen & Jinfeng Mao & Xu Han & Chaofeng Li & Liyao Liu, 2016. "Numerical Analysis of the Factors Influencing a Vertical U-Tube Ground Heat Exchanger," Sustainability, MDPI, vol. 8(9), pages 1-12, September.
    16. Félix Ruiz-Calvo & Carla Montagud & Antonio Cazorla-Marín & José M. Corberán, 2017. "Development and Experimental Validation of a TRNSYS Dynamic Tool for Design and Energy Optimization of Ground Source Heat Pump Systems," Energies, MDPI, vol. 10(10), pages 1-21, September.
    17. Choi, Hoon Ki & Yoo, Geun Jong & Pak, Jae Hun & Lee, Chang Hee, 2018. "Numerical study on heat transfer characteristics in branch tube type ground heat exchanger," Renewable Energy, Elsevier, vol. 115(C), pages 585-599.
    18. Charlier, Dorothée, 2015. "Energy efficiency investments in the context of split incentives among French households," Energy Policy, Elsevier, vol. 87(C), pages 465-479.
    19. Konstantin A Kholodilin & Andreas Mense & Claus Michelsen, 2017. "The market value of energy efficiency in buildings and the mode of tenure," Urban Studies, Urban Studies Journal Limited, vol. 54(14), pages 3218-3238, November.
    20. Xuebin Ma & Junfeng Li & Yucheng Ren & Reaihan E & Qiugang Wang & Jie Li & Sihui Huang & Mingguo Ma, 2022. "Performance and Economic Analysis of the Multi-Energy Complementary Heating System under Different Control Strategies in Cold Regions," Energies, MDPI, vol. 15(21), pages 1-17, November.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:18:p:7772-:d:416422. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.