IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i21p4067-d280146.html
   My bibliography  Save this article

Comparison of Four Methods for Borehole Heat Exchanger Sizing Subject to Thermal Response Test Parameter Estimation

Author

Listed:
  • Xuedan Zhang

    (School of Energy Science and Engineering, Harbin Institute of Technology, Harbin 150001, China)

  • Tiantian Zhang

    (School of Architecture, Harbin Institute of Technology, Harbin 150001, China
    Key Laboratory of Cold Region Urban and Rural Human Settlement Environment Science and Technology, Ministry of Industry and Information Technology, Harbin 150001, China)

  • Bingxi Li

    (School of Energy Science and Engineering, Harbin Institute of Technology, Harbin 150001, China)

  • Yiqiang Jiang

    (School of Architecture, Harbin Institute of Technology, Harbin 150001, China
    Key Laboratory of Cold Region Urban and Rural Human Settlement Environment Science and Technology, Ministry of Industry and Information Technology, Harbin 150001, China)

Abstract

The impact of different parameter estimation results on the design length of a borehole heat exchanger has received very little attention. This paper provides an in-depth investigation of this problem, together with a full presentation of six data interpretation models and a comprehensive comparison of four representative sizing methods and their inter models. Six heat transfer models were employed to interpret the same thermal response test data set. It was found that the estimated parameters varied with the data interpretation model. The relative difference in borehole thermal resistance reached 34.4%, and this value was 11.9% for soil thermal conductivity. The resulting parameter estimation results were used to simulate mean fluid temperature for a single borehole and then to determine the borehole length for a large bore field. The variations in these two correlated parameters caused about 15% and 5% relative difference in mean fluid temperature in the beginning and at the end of the simulation period, respectively. For computing the borehole design length, software-based methods were more sensitive to the influence of parameter estimation results than simple equation-based methods. It is expected that these comparisons will be beneficial to anyone involved in the design of ground-coupled heat pump systems.

Suggested Citation

  • Xuedan Zhang & Tiantian Zhang & Bingxi Li & Yiqiang Jiang, 2019. "Comparison of Four Methods for Borehole Heat Exchanger Sizing Subject to Thermal Response Test Parameter Estimation," Energies, MDPI, vol. 12(21), pages 1-30, October.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:21:p:4067-:d:280146
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/21/4067/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/21/4067/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Paolo Conti, 2016. "Dimensionless Maps for the Validity of Analytical Ground Heat Transfer Models for GSHP Applications," Energies, MDPI, vol. 9(11), pages 1-21, October.
    2. Yang, H. & Cui, P. & Fang, Z., 2010. "Vertical-borehole ground-coupled heat pumps: A review of models and systems," Applied Energy, Elsevier, vol. 87(1), pages 16-27, January.
    3. Angelo Zarrella & Giuseppe Emmi & Samantha Graci & Michele De Carli & Matteo Cultrera & Giorgia Dalla Santa & Antonio Galgaro & David Bertermann & Johannes Müller & Luc Pockelé & Giulia Mezzasalma & D, 2017. "Thermal Response Testing Results of Different Types of Borehole Heat Exchangers: An Analysis and Comparison of Interpretation Methods," Energies, MDPI, vol. 10(6), pages 1-18, June.
    4. Beier, Richard A., 2011. "Vertical temperature profile in ground heat exchanger during in-situ test," Renewable Energy, Elsevier, vol. 36(5), pages 1578-1587.
    5. Maestre, Ismael Rodríguez & Gallero, Francisco Javier González & Gómez, Pascual Álvarez & Pérez-Lombard, Luis, 2015. "A new RC and g-function hybrid model to simulate vertical ground heat exchangers," Renewable Energy, Elsevier, vol. 78(C), pages 631-642.
    6. Seung-Hoon Park & Eui-Jong Kim, 2019. "Optimal Sizing of Irregularly Arranged Boreholes Using Duct-Storage Model," Sustainability, MDPI, vol. 11(16), pages 1-18, August.
    7. Xiong, Zeyu & Fisher, Daniel E. & Spitler, Jeffrey D., 2015. "Development and validation of a Slinky™ ground heat exchanger model," Applied Energy, Elsevier, vol. 141(C), pages 57-69.
    8. Javier F. Urchueguía & Lenin-Guillermo Lemus-Zúñiga & Jose-Vicente Oliver-Villanueva & Borja Badenes & Miguel A. Mateo Pla & José Manuel Cuevas, 2018. "How Reliable Are Standard Thermal Response Tests? An Assessment Based on Long-Term Thermal Response Tests Under Different Operational Conditions," Energies, MDPI, vol. 11(12), pages 1-24, November.
    9. Marcotte, D. & Pasquier, P., 2008. "On the estimation of thermal resistance in borehole thermal conductivity test," Renewable Energy, Elsevier, vol. 33(11), pages 2407-2415.
    10. Zhang, Changxing & Guo, Zhanjun & Liu, Yufeng & Cong, Xiaochun & Peng, Donggen, 2014. "A review on thermal response test of ground-coupled heat pump systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 851-867.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tomasz Sliwa & Aneta Sapińska-Śliwa & Andrzej Gonet & Tomasz Kowalski & Anna Sojczyńska, 2021. "Geothermal Boreholes in Poland—Overview of the Current State of Knowledge," Energies, MDPI, vol. 14(11), pages 1-21, June.
    2. Saeed Alqaed & Jawed Mustafa & Kevin P. Hallinan & Rodwan Elhashmi, 2020. "Hybrid CHP/Geothermal Borehole System for Multi-Family Building in Heating Dominated Climates," Sustainability, MDPI, vol. 12(18), pages 1-16, September.
    3. Joanna Piotrowska-Woroniak, 2021. "Assessment of Ground Regeneration around Borehole Heat Exchangers between Heating Seasons in Cold Climates: A Case Study in Bialystok (NE, Poland)," Energies, MDPI, vol. 14(16), pages 1-32, August.
    4. Jiaming Wang & Hailong He & Miles Dyck & Jialong Lv, 2020. "A Review and Evaluation of Predictive Models for Thermal Conductivity of Sands at Full Water Content Range," Energies, MDPI, vol. 13(5), pages 1-15, March.
    5. Joanna Piotrowska-Woroniak, 2021. "Determination of the Selected Wells Operational Power with Borehole Heat Exchangers Operating in Real Conditions, Based on Experimental Tests," Energies, MDPI, vol. 14(9), pages 1-21, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Javadi, Hossein & Mousavi Ajarostaghi, Seyed Soheil & Rosen, Marc A. & Pourfallah, Mohsen, 2019. "Performance of ground heat exchangers: A comprehensive review of recent advances," Energy, Elsevier, vol. 178(C), pages 207-233.
    2. Zhang, Changxing & Wang, Xinjie & Sun, Pengkun & Kong, Xiangqiang & Sun, Shicai, 2020. "Effect of depth and fluid flow rate on estimate for borehole thermal resistance of single U-pipe borehole heat exchanger," Renewable Energy, Elsevier, vol. 147(P1), pages 2399-2408.
    3. Zhang, Linfeng & Zhang, Quan & Huang, Gongsheng & Du, Yaxing, 2014. "A p(t)-linear average method to estimate the thermal parameters of the borehole heat exchangers for in situ thermal response test," Applied Energy, Elsevier, vol. 131(C), pages 211-221.
    4. Somogyi, Viola & Sebestyén, Viktor & Nagy, Georgina, 2017. "Scientific achievements and regulation of shallow geothermal systems in six European countries – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P2), pages 934-952.
    5. Jia, Jie & Lee, W.L. & Cheng, Yuanda, 2019. "Field demonstration of a first constant-temperature thermal response test with both heat injection and extraction for ground source heat pump systems," Applied Energy, Elsevier, vol. 249(C), pages 79-86.
    6. Nian, Yong-Le & Wang, Xiang-Yang & Xie, Kun & Cheng, Wen-Long, 2020. "Estimation of ground thermal properties for coaxial BHE through distributed thermal response test," Renewable Energy, Elsevier, vol. 152(C), pages 1209-1219.
    7. Beier, Richard A. & Spitler, Jeffrey D., 2016. "Weighted average of inlet and outlet temperatures in borehole heat exchangers," Applied Energy, Elsevier, vol. 174(C), pages 118-129.
    8. Cui, Yuanlong & Zhu, Jie & Twaha, Ssennoga & Riffat, Saffa, 2018. "A comprehensive review on 2D and 3D models of vertical ground heat exchangers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 84-114.
    9. Zhang, Linfeng & Zhang, Quan & Huang, Gongsheng, 2016. "A transient quasi-3D entire time scale line source model for the fluid and ground temperature prediction of vertical ground heat exchangers (GHEs)," Applied Energy, Elsevier, vol. 170(C), pages 65-75.
    10. Wilke, Sascha & Menberg, Kathrin & Steger, Hagen & Blum, Philipp, 2020. "Advanced thermal response tests: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    11. Zhou, Yang & Zheng, Zhi-xiang & Zhao, Guang-si, 2022. "Analytical models for heat transfer around a single ground heat exchanger in the presence of both horizontal and vertical groundwater flow considering a convective boundary condition," Energy, Elsevier, vol. 245(C).
    12. Yoshitaka Sakata & Takao Katsura & Ahmed A. Serageldin & Katsunori Nagano & Motoaki Ooe, 2021. "Evaluating Variability of Ground Thermal Conductivity within a Steep Site by History Matching Underground Distributed Temperatures from Thermal Response Tests," Energies, MDPI, vol. 14(7), pages 1-17, March.
    13. Li, Min & Lai, Alvin C.K., 2015. "Review of analytical models for heat transfer by vertical ground heat exchangers (GHEs): A perspective of time and space scales," Applied Energy, Elsevier, vol. 151(C), pages 178-191.
    14. Javed, Saqib & Spitler, Jeffrey, 2017. "Accuracy of borehole thermal resistance calculation methods for grouted single U-tube ground heat exchangers," Applied Energy, Elsevier, vol. 187(C), pages 790-806.
    15. Alessandro Franco & Paolo Conti, 2020. "Clearing a Path for Ground Heat Exchange Systems: A Review on Thermal Response Test (TRT) Methods and a Geotechnical Routine Test for Estimating Soil Thermal Properties," Energies, MDPI, vol. 13(11), pages 1-21, June.
    16. Carotenuto, Alberto & Ciccolella, Michela & Massarotti, Nicola & Mauro, Alessandro, 2016. "Models for thermo-fluid dynamic phenomena in low enthalpy geothermal energy systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 330-355.
    17. Extremera-Jiménez, Alejandro J. & Gutiérrez-Montes, Cándido & Casanova-Peláez, Pedro J. & Cruz-Peragón, Fernando, 2022. "Vertical ground heat exchanger parameter characterization through a compound design of experiments," Renewable Energy, Elsevier, vol. 199(C), pages 1361-1371.
    18. Yu, Xiaohui & Li, Hongwei & Yao, Sheng & Nielsen, Vilhjalmur & Heller, Alfred, 2020. "Development of an efficient numerical model and analysis of heat transfer performance for borehole heat exchanger," Renewable Energy, Elsevier, vol. 152(C), pages 189-197.
    19. Beier, Richard A. & Acuña, José & Mogensen, Palne & Palm, Björn, 2013. "Borehole resistance and vertical temperature profiles in coaxial borehole heat exchangers," Applied Energy, Elsevier, vol. 102(C), pages 665-675.
    20. Soldo, Vladimir & Boban, Luka & Borović, Staša, 2016. "Vertical distribution of shallow ground thermal properties in different geological settings in Croatia," Renewable Energy, Elsevier, vol. 99(C), pages 1202-1212.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:21:p:4067-:d:280146. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.