IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v237y2024ipcs0960148124019104.html
   My bibliography  Save this article

Experimental investigation of thermal performance of ground source heat pump system for summer and monsoon seasons of Himalayan region of India: A case study

Author

Listed:
  • Kumar, Satish
  • Murugesan, Krishnan

Abstract

In the present experimental research work examines the thermal interactions of borehole heat exchangers on the ground side and psychrometric process involved inside the room during cooling mode operation using a ground source heat pump system (GSHP). An experimental facility of 17.5 kW cooling capacity GSHP system, consisting of five parallelly connected double U-tube borehole heat exchangers fitter with a commercially available heat pump system has been employed. The experiments were performed during peak summer and monsoon (rainy) seasons for space cooling applications for 45 hours of continuous operation in a city located in the Himalayan range of India. Analysis of results obtained indicate that during the summer season the hourly heat rejected to the ground is maximum for peak weather conditions due to high cooling load demand on the user side. On increasing the building load (increase in ambient temperature), there is a slight decrease in COPsys in both the seasons. During heavy rain season, the latent cooling load increases up to 1.5 times of the sensible cooling load. The average value of sensible heat factor is found to be 0.6 for the case of the peak summer season and 0.51 for the rainy season.

Suggested Citation

  • Kumar, Satish & Murugesan, Krishnan, 2024. "Experimental investigation of thermal performance of ground source heat pump system for summer and monsoon seasons of Himalayan region of India: A case study," Renewable Energy, Elsevier, vol. 237(PC).
  • Handle: RePEc:eee:renene:v:237:y:2024:i:pc:s0960148124019104
    DOI: 10.1016/j.renene.2024.121842
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148124019104
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2024.121842?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Blum, Philipp & Campillo, Gisela & Münch, Wolfram & Kölbel, Thomas, 2010. "CO2 savings of ground source heat pump systems – A regional analysis," Renewable Energy, Elsevier, vol. 35(1), pages 122-127.
    2. Mustafa Omer, Abdeen, 2008. "Ground-source heat pumps systems and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(2), pages 344-371, February.
    3. Hwang, Yujin & Lee, Jae-Keun & Jeong, Young-Man & Koo, Kyung-Min & Lee, Dong-Hyuk & Kim, In-Kyu & Jin, Sim-Won & Kim, Soo H., 2009. "Cooling performance of a vertical ground-coupled heat pump system installed in a school building," Renewable Energy, Elsevier, vol. 34(3), pages 578-582.
    4. Choi, Jong Min & Park, Yongjung & Kang, Shin-Hyung, 2013. "Heating performance verification of a ground source heat pump system with U-tube and double tube type GLHEs," Renewable Energy, Elsevier, vol. 54(C), pages 32-39.
    5. Yang, H. & Cui, P. & Fang, Z., 2010. "Vertical-borehole ground-coupled heat pumps: A review of models and systems," Applied Energy, Elsevier, vol. 87(1), pages 16-27, January.
    6. Park, Honghee & Lee, Joo Seoung & Kim, Wonuk & Kim, Yongchan, 2013. "The cooling seasonal performance factor of a hybrid ground-source heat pump with parallel and serial configurations," Applied Energy, Elsevier, vol. 102(C), pages 877-884.
    7. Yang, Weibo & Zhang, Heng & Liang, Xingfu, 2018. "Experimental performance evaluation and parametric study of a solar-ground source heat pump system operated in heating modes," Energy, Elsevier, vol. 149(C), pages 173-189.
    8. Angrisani, Giovanni & Minichiello, Francesco & Roselli, Carlo & Sasso, Maurizio, 2012. "Experimental analysis on the dehumidification and thermal performance of a desiccant wheel," Applied Energy, Elsevier, vol. 92(C), pages 563-572.
    9. Pulat, Erhan & Coskun, Salih & Unlu, Kursat & Yamankaradeniz, Nurettin, 2009. "Experimental study of horizontal ground source heat pump performance for mild climate in Turkey," Energy, Elsevier, vol. 34(9), pages 1284-1295.
    10. Liu, Zhijian & Xu, Wei & Zhai, Xue & Qian, Cheng & Chen, Xi, 2017. "Feasibility and performance study of the hybrid ground-source heat pump system for one office building in Chinese heating dominated areas," Renewable Energy, Elsevier, vol. 101(C), pages 1131-1140.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sivasakthivel, T. & Murugesan, K. & Sahoo, P.K., 2014. "A study on energy and CO2 saving potential of ground source heat pump system in India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 278-293.
    2. Zhai, X.Q. & Qu, M. & Yu, X. & Yang, Y. & Wang, R.Z., 2011. "A review for the applications and integrated approaches of ground-coupled heat pump systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(6), pages 3133-3140, August.
    3. Blum, Philipp & Campillo, Gisela & Kölbel, Thomas, 2011. "Techno-economic and spatial analysis of vertical ground source heat pump systems in Germany," Energy, Elsevier, vol. 36(5), pages 3002-3011.
    4. Nguyen, Hiep V. & Law, Ying Lam E. & Alavy, Masih & Walsh, Philip R. & Leong, Wey H. & Dworkin, Seth B., 2014. "An analysis of the factors affecting hybrid ground-source heat pump installation potential in North America," Applied Energy, Elsevier, vol. 125(C), pages 28-38.
    5. Haehnlein, Stefanie & Bayer, Peter & Blum, Philipp, 2010. "International legal status of the use of shallow geothermal energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 2611-2625, December.
    6. Karytsas, Spyridon & Choropanitis, Ioannis, 2017. "Barriers against and actions towards renewable energy technologies diffusion: A Principal Component Analysis for residential ground source heat pump (GSHP) systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 252-271.
    7. Gang, Wenjie & Wang, Jinbo, 2013. "Predictive ANN models of ground heat exchanger for the control of hybrid ground source heat pump systems," Applied Energy, Elsevier, vol. 112(C), pages 1146-1153.
    8. Sebarchievici, Calin & Sarbu, Ioan, 2015. "Performance of an experimental ground-coupled heat pump system for heating, cooling and domestic hot-water operation," Renewable Energy, Elsevier, vol. 76(C), pages 148-159.
    9. Choi, Jong Min & Park, Yong-Jung & Kang, Shin-Hyung, 2014. "Temperature distribution and performance of ground-coupled multi-heat pump systems for a greenhouse," Renewable Energy, Elsevier, vol. 65(C), pages 49-55.
    10. Sorranat Ratchawang & Srilert Chotpantarat & Sasimook Chokchai & Isao Takashima & Youhei Uchida & Punya Charusiri, 2022. "A Review of Ground Source Heat Pump Application for Space Cooling in Southeast Asia," Energies, MDPI, vol. 15(14), pages 1-18, July.
    11. Soni, Suresh Kumar & Pandey, Mukesh & Bartaria, Vishvendra Nath, 2016. "Hybrid ground coupled heat exchanger systems for space heating/cooling applications: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 724-738.
    12. Gang, Wenjie & Wang, Jinbo & Wang, Shengwei, 2014. "Performance analysis of hybrid ground source heat pump systems based on ANN predictive control," Applied Energy, Elsevier, vol. 136(C), pages 1138-1144.
    13. Maestre, Ismael Rodríguez & Gallero, Francisco Javier González & Gómez, Pascual Álvarez & Pérez-Lombard, Luis, 2015. "A new RC and g-function hybrid model to simulate vertical ground heat exchangers," Renewable Energy, Elsevier, vol. 78(C), pages 631-642.
    14. Liu, Zhijian & Li, Yuanwei & Xu, Wei & Yin, Hang & Gao, Jun & Jin, Guangya & Lun, Liyong & Jin, Guohui, 2019. "Performance and feasibility study of hybrid ground source heat pump system assisted with cooling tower for one office building based on one Shanghai case," Energy, Elsevier, vol. 173(C), pages 28-37.
    15. Aranzabal, Nordin & Martos, Julio & Steger, Hagen & Blum, Philipp & Soret, Jesús, 2019. "Temperature measurements along a vertical borehole heat exchanger: A method comparison," Renewable Energy, Elsevier, vol. 143(C), pages 1247-1258.
    16. Ozyurt, Omer & Ekinci, Dundar Arif, 2011. "Experimental study of vertical ground-source heat pump performance evaluation for cold climate in Turkey," Applied Energy, Elsevier, vol. 88(4), pages 1257-1265, April.
    17. Zhang, Shuyang & Zhang, Lun & Zhang, Xiaosong, 2022. "Clustering based on dynamic time warping to extract typical daily patterns from long-term operation data of a ground source heat pump system," Energy, Elsevier, vol. 249(C).
    18. Kerme, Esa Dube & Alzahrani, Waleed Saeed & Fung, Alan S. & Leong, Wey H., 2024. "Experimental investigation of ground-source heat pump system coupled to vertical and horizontal ground loops: A case study," Renewable Energy, Elsevier, vol. 236(C).
    19. Man, Yi & Yang, Hongxing & Wang, Jinggang & Fang, Zhaohong, 2012. "In situ operation performance test of ground coupled heat pump system for cooling and heating provision in temperate zone," Applied Energy, Elsevier, vol. 97(C), pages 913-920.
    20. Self, Stuart J. & Reddy, Bale V. & Rosen, Marc A., 2013. "Geothermal heat pump systems: Status review and comparison with other heating options," Applied Energy, Elsevier, vol. 101(C), pages 341-348.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:237:y:2024:i:pc:s0960148124019104. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.