IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v65y2014icp49-55.html
   My bibliography  Save this article

Temperature distribution and performance of ground-coupled multi-heat pump systems for a greenhouse

Author

Listed:
  • Choi, Jong Min
  • Park, Yong-Jung
  • Kang, Shin-Hyung

Abstract

The primary objective of a greenhouse is to produce good plant-growth conditions such as temperature and humidity. One of the hot issues for the greenhouse is to provide an appropriate heating system which can achieve favorable temperature condition and save energy. In this study, the performance of a ground-coupled multi-heat pump system for the greenhouse heating was investigated. The ground-coupled multi-heat pump system was composed of GLHX (ground loop heat exchanger) and multi-heat pump unit which had one outdoor unit and two or more indoor units. The temperature distribution within the greenhouse using the ground-coupled multi-heat pump system was represented relatively uniform comparing to when the conventional heating system and GCHP system were adopted, because the capacity of each indoor unit could be changed linearly according to the variation of load. The temperature difference between the maximum and minimum temperatures and the standard deviation of inside temperature for the greenhouse were 2.1 °C and 1.2 °C, respectively. It is necessary to develop the multi-heat pump unit which can be operated with high performance at relatively low temperature setting conditions. The system COP of the ground-coupled multi-heat pump unit decreased greatly at part load condition due to relatively high power consumption of the ground circulation pump. Therefore, it is suggested that a control algorithm of the ground circulation flow rate has to be developed to maximize energy saving by applying the ground-coupled multi-heat pump system to the greenhouse.

Suggested Citation

  • Choi, Jong Min & Park, Yong-Jung & Kang, Shin-Hyung, 2014. "Temperature distribution and performance of ground-coupled multi-heat pump systems for a greenhouse," Renewable Energy, Elsevier, vol. 65(C), pages 49-55.
  • Handle: RePEc:eee:renene:v:65:y:2014:i:c:p:49-55
    DOI: 10.1016/j.renene.2013.07.010
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148113003558
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2013.07.010?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hwang, Suckho & Ooka, Ryozo & Nam, Yujin, 2010. "Evaluation of estimation method of ground properties for the ground source heat pump system," Renewable Energy, Elsevier, vol. 35(9), pages 2123-2130.
    2. Mustafa Omer, Abdeen, 2008. "Ground-source heat pumps systems and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(2), pages 344-371, February.
    3. Hwang, Yujin & Lee, Jae-Keun & Jeong, Young-Man & Koo, Kyung-Min & Lee, Dong-Hyuk & Kim, In-Kyu & Jin, Sim-Won & Kim, Soo H., 2009. "Cooling performance of a vertical ground-coupled heat pump system installed in a school building," Renewable Energy, Elsevier, vol. 34(3), pages 578-582.
    4. Choi, Jong Min & Park, Yongjung & Kang, Shin-Hyung, 2013. "Heating performance verification of a ground source heat pump system with U-tube and double tube type GLHEs," Renewable Energy, Elsevier, vol. 54(C), pages 32-39.
    5. Chou, S. K. & Chua, K. J. & Ho, J. C. & Ooi, C. L., 2004. "On the study of an energy-efficient greenhouse for heating, cooling and dehumidification applications," Applied Energy, Elsevier, vol. 77(4), pages 355-373, April.
    6. Choi, J.M & Kim, Y.C, 2003. "Capacity modulation of an inverter-driven multi-air conditioner using electronic expansion valves," Energy, Elsevier, vol. 28(2), pages 141-155.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lv, Liugen & Huang, Chen & Li, Li & Chen, Jianchang, 2015. "Experimental study on calculation method of the radiant time factors," Renewable Energy, Elsevier, vol. 73(C), pages 28-35.
    2. Muñoz-Liesa, Joan & Royapoor, Mohammad & López-Capel, Elisa & Cuerva, Eva & Rufí-Salís, Martí & Gassó-Domingo, Santiago & Josa, Alejandro, 2020. "Quantifying energy symbiosis of building-integrated agriculture in a mediterranean rooftop greenhouse," Renewable Energy, Elsevier, vol. 156(C), pages 696-709.
    3. Jeong Soo Shin & Jong Woo Park & Sean Hay Kim, 2020. "Measurement and Verification of Integrated Ground Source Heat Pumps on a Shared Ground Loop," Energies, MDPI, vol. 13(7), pages 1-24, April.
    4. Ghasemi Mobtaker, Hassan & Ajabshirchi, Yahya & Ranjbar, Seyed Faramarz & Matloobi, Mansour, 2016. "Solar energy conservation in greenhouse: Thermal analysis and experimental validation," Renewable Energy, Elsevier, vol. 96(PA), pages 509-519.
    5. Nowamooz, Hossein & Nikoosokhan, Saeid & Lin, Jian & Chazallon, Cyrille, 2015. "Finite difference modeling of heat distribution in multilayer soils with time-spatial hydrothermal properties," Renewable Energy, Elsevier, vol. 76(C), pages 7-15.
    6. Qiu Tu & Lina Zhang & Linzhang Li & Chenmian Deng & Bingjun Wang & Binquan Gu & Zhengwu Dai, 2022. "Comparison of Application Effects of Capillary Radiation Heat Pump and Electric Heating Wire in Greenhouse Seedling Cultivation," Agriculture, MDPI, vol. 12(9), pages 1-23, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chung, Jin Taek & Choi, Jong Min, 2012. "Design and performance study of the ground-coupled heat pump system with an operating parameter," Renewable Energy, Elsevier, vol. 42(C), pages 118-124.
    2. Choi, Jong Min & Park, Yongjung & Kang, Shin-Hyung, 2013. "Heating performance verification of a ground source heat pump system with U-tube and double tube type GLHEs," Renewable Energy, Elsevier, vol. 54(C), pages 32-39.
    3. Blum, Philipp & Campillo, Gisela & Kölbel, Thomas, 2011. "Techno-economic and spatial analysis of vertical ground source heat pump systems in Germany," Energy, Elsevier, vol. 36(5), pages 3002-3011.
    4. Li, Min & Lai, Alvin C.K., 2015. "Review of analytical models for heat transfer by vertical ground heat exchangers (GHEs): A perspective of time and space scales," Applied Energy, Elsevier, vol. 151(C), pages 178-191.
    5. Zhang, Shuyang & Zhang, Lun & Zhang, Xiaosong, 2022. "Clustering based on dynamic time warping to extract typical daily patterns from long-term operation data of a ground source heat pump system," Energy, Elsevier, vol. 249(C).
    6. Sivasakthivel, T. & Murugesan, K. & Thomas, H.R., 2014. "Optimization of operating parameters of ground source heat pump system for space heating and cooling by Taguchi method and utility concept," Applied Energy, Elsevier, vol. 116(C), pages 76-85.
    7. Zhai, X.Q. & Qu, M. & Yu, X. & Yang, Y. & Wang, R.Z., 2011. "A review for the applications and integrated approaches of ground-coupled heat pump systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(6), pages 3133-3140, August.
    8. Jalaluddin, & Miyara, Akio & Tsubaki, Koutaro & Inoue, Shuntaro & Yoshida, Kentaro, 2011. "Experimental study of several types of ground heat exchanger using a steel pile foundation," Renewable Energy, Elsevier, vol. 36(2), pages 764-771.
    9. Sivasakthivel, T. & Murugesan, K. & Sahoo, P.K., 2014. "A study on energy and CO2 saving potential of ground source heat pump system in India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 278-293.
    10. Sommer, Wijbrand & Valstar, Johan & Leusbrock, Ingo & Grotenhuis, Tim & Rijnaarts, Huub, 2015. "Optimization and spatial pattern of large-scale aquifer thermal energy storage," Applied Energy, Elsevier, vol. 137(C), pages 322-337.
    11. Archan Shah & Moncef Krarti & Joe Huang, 2022. "Energy Performance Evaluation of Shallow Ground Source Heat Pumps for Residential Buildings," Energies, MDPI, vol. 15(3), pages 1-25, January.
    12. Deng, Zhenpeng & Nian, Yongle & Cheng, Wen-long, 2023. "Estimation method of layered ground thermal conductivity for U-tube BHE based on the quasi-3D model," Renewable Energy, Elsevier, vol. 213(C), pages 121-133.
    13. Leffler, Robert A. & Bradshaw, Craig R. & Groll, Eckhard A. & Garimella, Suresh V., 2012. "Alternative heat rejection methods for power plants," Applied Energy, Elsevier, vol. 92(C), pages 17-25.
    14. Ozgener, Onder, 2010. "Use of solar assisted geothermal heat pump and small wind turbine systems for heating agricultural and residential buildings," Energy, Elsevier, vol. 35(1), pages 262-268.
    15. Tong, Zheming & Chen, Yujiao & Malkawi, Ali & Liu, Zhu & Freeman, Richard B., 2016. "Energy saving potential of natural ventilation in China: The impact of ambient air pollution," Applied Energy, Elsevier, vol. 179(C), pages 660-668.
    16. Bakirci, Kadir & Colak, Derya, 2012. "Effect of a superheating and sub-cooling heat exchanger to the performance of a ground source heat pump system," Energy, Elsevier, vol. 44(1), pages 996-1004.
    17. Nguyen, Hiep V. & Law, Ying Lam E. & Alavy, Masih & Walsh, Philip R. & Leong, Wey H. & Dworkin, Seth B., 2014. "An analysis of the factors affecting hybrid ground-source heat pump installation potential in North America," Applied Energy, Elsevier, vol. 125(C), pages 28-38.
    18. Barkat Rabbi & Zhong-Hua Chen & Subbu Sethuvenkatraman, 2019. "Protected Cropping in Warm Climates: A Review of Humidity Control and Cooling Methods," Energies, MDPI, vol. 12(14), pages 1-24, July.
    19. Ghasemi Mobtaker, Hassan & Ajabshirchi, Yahya & Ranjbar, Seyed Faramarz & Matloobi, Mansour, 2016. "Solar energy conservation in greenhouse: Thermal analysis and experimental validation," Renewable Energy, Elsevier, vol. 96(PA), pages 509-519.
    20. Li, Biao & Han, Zongwei & Bai, Chenguang & Hu, Honghao, 2019. "The influence of soil thermal properties on the operation performance on ground source heat pump system," Renewable Energy, Elsevier, vol. 141(C), pages 903-913.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:65:y:2014:i:c:p:49-55. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.