IDEAS home Printed from https://ideas.repec.org/p/qsh/wpaper/428396.html

Energy saving potential of natural ventilation in China: The impact of ambient air pollution

Author

Listed:
  • Zheming Tong
  • Yujiao Chen
  • Malkawi, Ali
  • Zhu Liu
  • Richard B. Freeman

Abstract

Natural ventilation (NV) is a key sustainable solution for reducing the energy use in buildings, improving thermal comfort, and maintaining a healthy indoor environment. However, the energy savings and environmental benefits are affected greatly by ambient air pollution in China. Here we estimate the NV potential of all major Chinese cities based on weather, ambient air quality, building configuration, and newly constructed square footage of office buildings in the year of 2015. In general, little NV potential is observed in northern China during the winter and southern China during the summer. Kunming located in the Southwest China is the most weather-favorable city for natural ventilation, and reveals almost no loss due to air pollution. Building Energy Simulation (BES) is conducted to estimate the energy savings of natural ventilation in which ambient air pollution and total square footage at each city must be taken into account. Beijing, the capital city, displays limited per-square-meter saving potential due to the unfavorable weather and air quality for natural ventilation, but its largest total square footage of office buildings makes it become the city with the greatest energy saving opportunity in China. Our analysis shows that the aggregated energy savings potential of office buildings at 35 major Chinese cities is 112 GWh in 2015, even after allowing for a 43 GWh loss due to China?s serious air pollution issue especially in North China. 8?78% of the cooling energy consumption can be potentially reduced by natural ventilation depending on local weather and air quality. The findings here provide guidelines for improving current energy and environmental policies in China, and a direction for reforming building codes.

Suggested Citation

  • Zheming Tong & Yujiao Chen & Malkawi, Ali & Zhu Liu & Richard B. Freeman, "undated". "Energy saving potential of natural ventilation in China: The impact of ambient air pollution," Working Paper 428396, Harvard University OpenScholar.
  • Handle: RePEc:qsh:wpaper:428396
    as

    Download full text from publisher

    File URL: http://scholar.harvard.edu/zhu/node/428396
    Download Restriction: no
    ---><---

    Other versions of this item:

    More about this item

    JEL classification:

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:qsh:wpaper:428396. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Richard Brandon The email address of this maintainer does not seem to be valid anymore. Please ask Richard Brandon to update the entry or send us the correct address (email available below). General contact details of provider: https://edirc.repec.org/data/cbrssus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.