IDEAS home Printed from
   My bibliography  Save this article

Can Euro V heavy-duty diesel engines, diesel hybrid and alternative fuel technologies mitigate NOX emissions? New evidence from on-road tests of buses in China


  • Zhang, Shaojun
  • Wu, Ye
  • Hu, Jingnan
  • Huang, Ruikun
  • Zhou, Yu
  • Bao, Xiaofeng
  • Fu, Lixin
  • Hao, Jiming


Nitrogen oxides (NOX) emissions are creating significant air quality challenges in China’s megacities. Since Euro IV diesel buses equipped with selective catalyst reduction (SCR) systems failed to mitigate on-road NOX emissions as expected, real-world NOX emissions from newly introduced Euro V diesel buses, diesel hybrid and alternative fuel (e.g., natural gas) buses are of great concern to policymakers in China. In this study, NOX emissions from two Euro V diesel, two Euro IV diesel hybrid, nine compressed natural gas (CNG) and two liquefied natural gas (LNG) buses were measured on-road by using portable emission measurement systems (PEMS). The average NOX emission factor of the Euro V diesel buses was 7.5±0.1gkm−1 for a typical driving cycle, 37% lower than the Euro IV diesel buses. However, the average brake-specific emission factor still exceeded the Euro V standard by 180%. The diesel hybrid buses had an average NOX emission factor of 4.4±1.1gkm−1, much lower than their conventional diesel counterparts. CNG and LNG buses also had lower NOX emission factors. The average NOX emission factor of the LNG buses was 3.2±0.7gkm−1, due to the performance of the SCR systems under higher exhaust temperatures. Furthermore, real-world NOX emission factors for all tested vehicle categories except diesel hybrids were significantly sensitive to changes of average speed. Operation of air conditioning in the bus reduced average NOX emissions by 38% for diesel hybrid buses although fuel consumption increased. These results suggest hybrid and CNG/LNG technologies are better options than the Euro V diesel engines to mitigate NOX emissions from urban buses.

Suggested Citation

  • Zhang, Shaojun & Wu, Ye & Hu, Jingnan & Huang, Ruikun & Zhou, Yu & Bao, Xiaofeng & Fu, Lixin & Hao, Jiming, 2014. "Can Euro V heavy-duty diesel engines, diesel hybrid and alternative fuel technologies mitigate NOX emissions? New evidence from on-road tests of buses in China," Applied Energy, Elsevier, vol. 132(C), pages 118-126.
  • Handle: RePEc:eee:appene:v:132:y:2014:i:c:p:118-126
    DOI: 10.1016/j.apenergy.2014.07.008

    Download full text from publisher

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Zamboni, Giorgio & Malfettani, Stefano & André, Michel & Carraro, Chiara & Marelli, Silvia & Capobianco, Massimo, 2013. "Assessment of heavy-duty vehicle activities, fuel consumption and exhaust emissions in port areas," Applied Energy, Elsevier, vol. 111(C), pages 921-929.
    2. Zhang, Shaojun & Wu, Ye & Liu, Huan & Huang, Ruikun & Yang, Liuhanzi & Li, Zhenhua & Fu, Lixin & Hao, Jiming, 2014. "Real-world fuel consumption and CO2 emissions of urban public buses in Beijing," Applied Energy, Elsevier, vol. 113(C), pages 1645-1655.
    3. Yang, Ming & Kraft-Oliver, Terry & Yan, Guo Xiao & Min, Wang Tian, 1997. "Compressed natural gas vehicles: Motoring towards a cleaner Beijing," Applied Energy, Elsevier, vol. 56(3-4), pages 395-405, March.
    4. Ryu, Kyunghyun, 2013. "Effects of pilot injection timing on the combustion and emissions characteristics in a diesel engine using biodiesel–CNG dual fuel," Applied Energy, Elsevier, vol. 111(C), pages 721-730.
    5. Saxena, Samveg & Phadke, Amol & Gopal, Anand, 2014. "Understanding the fuel savings potential from deploying hybrid cars in China," Applied Energy, Elsevier, vol. 113(C), pages 1127-1133.
    6. Arteconi, A. & Brandoni, C. & Evangelista, D. & Polonara, F., 2010. "Life-cycle greenhouse gas analysis of LNG as a heavy vehicle fuel in Europe," Applied Energy, Elsevier, vol. 87(6), pages 2005-2013, June.
    7. Ma, Linwei & Geng, Jia & Li, Weqi & Liu, Pei & Li, Zheng, 2013. "The development of natural gas as an automotive fuel in China," Energy Policy, Elsevier, vol. 62(C), pages 531-539.
    8. Schmitt, William F. & Szklo, Alexandre & Schaeffer, Roberto, 2011. "Policies for improving the efficiency of the Brazilian light-duty vehicle fleet and their implications for fuel use, greenhouse gas emissions and land use," Energy Policy, Elsevier, vol. 39(6), pages 3163-3176, June.
    9. Kumar, Satish & Kwon, Hyouk-Tae & Choi, Kwang-Ho & Lim, Wonsub & Cho, Jae Hyun & Tak, Kyungjae & Moon, Il, 2011. "LNG: An eco-friendly cryogenic fuel for sustainable development," Applied Energy, Elsevier, vol. 88(12), pages 4264-4273.
    10. Damiani, Lorenzo & Repetto, Matteo & Prato, Alessandro Pini, 2014. "Improvement of powertrain efficiency through energy breakdown analysis," Applied Energy, Elsevier, vol. 121(C), pages 252-263.
    11. An, H. & Yang, W.M. & Chou, S.K. & Chua, K.J., 2012. "Combustion and emissions characteristics of diesel engine fueled by biodiesel at partial load conditions," Applied Energy, Elsevier, vol. 99(C), pages 363-371.
    12. An, H. & Yang, W.M. & Maghbouli, A. & Li, J. & Chou, S.K. & Chua, K.J., 2013. "Performance, combustion and emission characteristics of biodiesel derived from waste cooking oils," Applied Energy, Elsevier, vol. 112(C), pages 493-499.
    13. Wu, Ye & Yang, Zhengdong & Lin, Bohong & Liu, Huan & Wang, Renjie & Zhou, Boya & Hao, Jiming, 2012. "Energy consumption and CO2 emission impacts of vehicle electrification in three developed regions of China," Energy Policy, Elsevier, vol. 48(C), pages 537-550.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Ke, Wenwei & Zhang, Shaojun & He, Xiaoyi & Wu, Ye & Hao, Jiming, 2017. "Well-to-wheels energy consumption and emissions of electric vehicles: Mid-term implications from real-world features and air pollution control progress," Applied Energy, Elsevier, vol. 188(C), pages 367-377.
    2. Ouyang, Minggao & Zhang, Weilin & Wang, Enhua & Yang, Fuyuan & Li, Jianqiu & Li, Zhongyan & Yu, Ping & Ye, Xiao, 2015. "Performance analysis of a novel coaxial power-split hybrid powertrain using a CNG engine and supercapacitors," Applied Energy, Elsevier, vol. 157(C), pages 595-606.
    3. Guo, Jiadong & Ge, Yunshan & Hao, Lijun & Tan, Jianwei & Peng, Zihang & Zhang, Chuanzhen, 2015. "Comparison of real-world fuel economy and emissions from parallel hybrid and conventional diesel buses fitted with selective catalytic reduction systems," Applied Energy, Elsevier, vol. 159(C), pages 433-441.
    4. Yu, Qian & Li, Tiezhu & Li, Hu, 2016. "Improving urban bus emission and fuel consumption modeling by incorporating passenger load factor for real world driving," Applied Energy, Elsevier, vol. 161(C), pages 101-111.
    5. Zhou, Boya & Wu, Ye & Zhou, Bin & Wang, Renjie & Ke, Wenwei & Zhang, Shaojun & Hao, Jiming, 2016. "Real-world performance of battery electric buses and their life-cycle benefits with respect to energy consumption and carbon dioxide emissions," Energy, Elsevier, vol. 96(C), pages 603-613.
    6. Ercan, Tolga & Zhao, Yang & Tatari, Omer & Pazour, Jennifer A., 2015. "Optimization of transit bus fleet's life cycle assessment impacts with alternative fuel options," Energy, Elsevier, vol. 93(P1), pages 323-334.
    7. repec:gam:jeners:v:11:y:2018:i:10:p:2569-:d:172202 is not listed on IDEAS
    8. Yue, Xin & Wu, Ye & Hao, Jiming & Pang, Yuan & Ma, Yao & Li, Yi & Li, Boshi & Bao, Xiaofeng, 2015. "Fuel quality management versus vehicle emission control in China, status quo and future perspectives," Energy Policy, Elsevier, vol. 79(C), pages 87-98.
    9. Tong, Zheming & Chen, Yujiao & Malkawi, Ali & Liu, Zhu & Freeman, Richard B., 2016. "Energy saving potential of natural ventilation in China: The impact of ambient air pollution," Applied Energy, Elsevier, vol. 179(C), pages 660-668.
    10. repec:gam:jsusta:v:10:y:2018:i:6:p:2051-:d:152945 is not listed on IDEAS
    11. Liu, Bolan & Zhang, Fujun & Zhao, Changlu & An, Xiaohui & Pei, Haijun, 2016. "A novel lambda-based EGR (exhaust gas recirculation) modulation method for a turbocharged diesel engine under transient operation," Energy, Elsevier, vol. 96(C), pages 521-530.
    12. Ferrero, Enrico & Alessandrini, Stefano & Balanzino, Alessia, 2016. "Impact of the electric vehicles on the air pollution from a highway," Applied Energy, Elsevier, vol. 169(C), pages 450-459.
    13. Tong, Zheming & Chen, Yujiao & Malkawi, Ali, 2016. "Defining the Influence Region in neighborhood-scale CFD simulations for natural ventilation design," Applied Energy, Elsevier, vol. 182(C), pages 625-633.
    14. Wang, Renjie & Wu, Ye & Ke, Wenwei & Zhang, Shaojun & Zhou, Boya & Hao, Jiming, 2015. "Can propulsion and fuel diversity for the bus fleet achieve the win–win strategy of energy conservation and environmental protection?," Applied Energy, Elsevier, vol. 147(C), pages 92-103.
    15. Tong, Zheming & Chen, Yujiao & Malkawi, Ali, 2017. "Estimating natural ventilation potential for high-rise buildings considering boundary layer meteorology," Applied Energy, Elsevier, vol. 193(C), pages 276-286.
    16. Zhang, Shaojun & Wu, Ye & Un, Puikei & Fu, Lixin & Hao, Jiming, 2016. "Modeling real-world fuel consumption and carbon dioxide emissions with high resolution for light-duty passenger vehicles in a traffic populated city," Energy, Elsevier, vol. 113(C), pages 461-471.


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:132:y:2014:i:c:p:118-126. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.