IDEAS home Printed from
   My bibliography  Save this article

Effects of pilot injection timing on the combustion and emissions characteristics in a diesel engine using biodiesel–CNG dual fuel


  • Ryu, Kyunghyun


Combustion and emissions characteristics of a compression ignition engine with a dual fuel (biodiesel–CNG) combustion system were investigated in this study. This experiment utilized a biodiesel pilot injection to ignite a main charge of compressed natural gas (CNG). The pilot injection pressure was maintained at approximately 120MPa while the pilot injection timing was varied across the range 11–23 crank angle degrees (CAD) before top-dead-center (BTDC) to investigate the characteristics of engine performance and exhaust emissions in a single cylinder diesel engine. Results show that performance can be optimized for biodiesel–CNG dual fuel combustion (DFC) by advancing the pilot injection timing for low loads and delaying the injection timing for high loads. However, overall performance of diesel single fuel combustion (SFC) still exceeds that of biodiesel–CNG DFC. Slight cycle-to-cycle variations are observed when dual fuel is used, but remains less than 1.3% at all conditions. The combustion of biodiesel–CNG begins at a later CAD compared to that of diesel SFC due to the increase of ignition delay of the pilot fuel. The ignition delay in DFC is 1.6–4.4 CAD longer than that of the diesel SFC. Ignition delays are reduced with the increased engine load. BSEC of biodiesel–CNG DFC improves with advanced pilot injection timing at low load and with delayed pilot injection timing at full load. Smoke is decreased and NOx is increased with advanced pilot injection timing in the biodiesel–CNG DFC. Compared to the diesel SFC, however, smoke emissions are significantly reduced over the range of operating conditions and NOx emissions are also reduced except for the full load condition. DFC yields lower CO2 emissions compared to diesel SFC over all engine conditions. Biodiesel–CNG DFC results in relative high CO and HC emissions at low load conditions due to the low combustion temperature of CNG but no notable trend of HC emissions with variations of pilot injection timing were discovered.

Suggested Citation

  • Ryu, Kyunghyun, 2013. "Effects of pilot injection timing on the combustion and emissions characteristics in a diesel engine using biodiesel–CNG dual fuel," Applied Energy, Elsevier, vol. 111(C), pages 721-730.
  • Handle: RePEc:eee:appene:v:111:y:2013:i:c:p:721-730
    DOI: 10.1016/j.apenergy.2013.05.046

    Download full text from publisher

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. López, José M & Gómez, Álvaro & Aparicio, Francisco & Javier Sánchez, Fco., 2009. "Comparison of GHG emissions from diesel, biodiesel and natural gas refuse trucks of the City of Madrid," Applied Energy, Elsevier, vol. 86(5), pages 610-615, May.
    2. Park, Su Han & Yoon, Seung Hyun & Lee, Chang Sik, 2011. "Effects of multiple-injection strategies on overall spray behavior, combustion, and emissions reduction characteristics of biodiesel fuel," Applied Energy, Elsevier, vol. 88(1), pages 88-98, January.
    3. Mancaruso, Ezio & Vaglieco, Bianca Maria, 2012. "Premixed combustion of GTL and RME fuels in a single cylinder research engine," Applied Energy, Elsevier, vol. 91(1), pages 385-394.
    4. Namasivayam, A.M. & Korakianitis, T. & Crookes, R.J. & Bob-Manuel, K.D.H. & Olsen, J., 2010. "Biodiesel, emulsified biodiesel and dimethyl ether as pilot fuels for natural gas fuelled engines," Applied Energy, Elsevier, vol. 87(3), pages 769-778, March.
    5. Ramadhas, A.S. & Muraleedharan, C. & Jayaraj, S., 2005. "Performance and emission evaluation of a diesel engine fueled with methyl esters of rubber seed oil," Renewable Energy, Elsevier, vol. 30(12), pages 1789-1800.
    6. Varuvel, Edwin Geo & Mrad, Nadia & Tazerout, Mohand & Aloui, Fethi, 2012. "Experimental analysis of biofuel as an alternative fuel for diesel engines," Applied Energy, Elsevier, vol. 94(C), pages 224-231.
    7. Korakianitis, T. & Boruta, M. & Jerovsek, J. & Meitner, P.L., 2009. "Performance of a single nutating disk engine in the 2 to 500Â kW power range," Applied Energy, Elsevier, vol. 86(10), pages 2213-2221, October.
    8. Lubbe, Nils & Sahlin, Ullrika, 2012. "Benefits of biofuels in Sweden: A probabilistic re-assessment of the index of new cars’ climate impact," Applied Energy, Elsevier, vol. 92(C), pages 473-479.
    9. Ganapathy, T. & Gakkhar, R.P. & Murugesan, K., 2011. "Influence of injection timing on performance, combustion and emission characteristics of Jatropha biodiesel engine," Applied Energy, Elsevier, vol. 88(12), pages 4376-4386.
    10. Selim, Mohamed Y.E. & Radwan, M.S. & Saleh, H.E., 2008. "Improving the performance of dual fuel engines running on natural gas/LPG by using pilot fuel derived from jojoba seeds," Renewable Energy, Elsevier, vol. 33(6), pages 1173-1185.
    Full references (including those not matched with items on IDEAS)


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:111:y:2013:i:c:p:721-730. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.