IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v113y2014icp488-499.html
   My bibliography  Save this article

Performance characteristics of compression-ignition engine using high concentration of ammonia mixed with dimethyl ether

Author

Listed:
  • Ryu, Kyunghyun
  • Zacharakis-Jutz, George E.
  • Kong, Song-Charng

Abstract

Combustion and emissions characteristics of a compression-ignition engine using ammonia (NH3) and dimethyl ether (DME) mixtures were investigated in this study. The experiments were conducted using three different mixtures, including 100%DME, 60%DME–40%NH3, and 40%DME–60%NH3 (by weight). The injection pressure was maintained at approximately 20.6MPa and engine combustion and exhaust emissions were measured in order to analyze and compare the performance of different mixture compositions. Results show that engine performance decreases as ammonia concentration in the fuel mixture increases. Significant cycle-to-cycle variations are observed when 40%DME–60%NH3 is used. The injection timing for best torque needs to be advanced with increased ammonia concentration in the fuel mixture due to the high resistance to autoignition of ammonia. Moreover, with the increase in ammonia concentration, both engine speed and engine power exhibit limitations relative to 100%DME cases. For 40%DME–60%NH3, the appropriate injection timing was found to range from 90 to 340 BTDC and the engine exhibits homogeneous charge compression ignition (HCCI) combustion characteristics due to the highly advanced injection timing. 40%DME–60%NH3 conditions also results in higher CO and HC emissions due to the low combustion temperature of ammonia. Soot emissions for 40%DME–60%NH3 remain extremely low. When ammonia is used, NOx emissions are increased due to the formation of fuel NOx. Exhaust ammonia emissions also increase as ammonia concentration in the fuel mixture increases from 40% to 60%. Overall, in this study appropriate strategies are developed to enable the use of ammonia in direct-injection compression-ignition engines and the corresponding engine performance is evaluated.

Suggested Citation

  • Ryu, Kyunghyun & Zacharakis-Jutz, George E. & Kong, Song-Charng, 2014. "Performance characteristics of compression-ignition engine using high concentration of ammonia mixed with dimethyl ether," Applied Energy, Elsevier, vol. 113(C), pages 488-499.
  • Handle: RePEc:eee:appene:v:113:y:2014:i:c:p:488-499
    DOI: 10.1016/j.apenergy.2013.07.065
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261913006326
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2013.07.065?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mancaruso, Ezio & Vaglieco, Bianca Maria, 2012. "Premixed combustion of GTL and RME fuels in a single cylinder research engine," Applied Energy, Elsevier, vol. 91(1), pages 385-394.
    2. Varuvel, Edwin Geo & Mrad, Nadia & Tazerout, Mohand & Aloui, Fethi, 2012. "Experimental analysis of biofuel as an alternative fuel for diesel engines," Applied Energy, Elsevier, vol. 94(C), pages 224-231.
    3. Saravanan, N. & Nagarajan, G., 2010. "Performance and emission studies on port injection of hydrogen with varied flow rates with Diesel as an ignition source," Applied Energy, Elsevier, vol. 87(7), pages 2218-2229, July.
    4. Brodrecht, David J. & Rusek, John J., 2003. "Aluminum-hydrogen peroxide fuel-cell studies," Applied Energy, Elsevier, vol. 74(1-2), pages 113-124, January.
    5. Lubbe, Nils & Sahlin, Ullrika, 2012. "Benefits of biofuels in Sweden: A probabilistic re-assessment of the index of new cars’ climate impact," Applied Energy, Elsevier, vol. 92(C), pages 473-479.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pham, Quangkhai & Park, Sungwook & Agarwal, Avinash Kumar & Park, Suhan, 2022. "Review of dual-fuel combustion in the compression-ignition engine: Spray, combustion, and emission," Energy, Elsevier, vol. 250(C).
    2. Huang, Si-Yuan & Zhou, Jin & Liu, Shi-Jie & Peng, Hao-Yang & Yuan, Xue-Qiang, 2022. "Continuous rotating detonation engine fueled by ammonia," Energy, Elsevier, vol. 252(C).
    3. Wang, W. & Herreros, J.M. & Tsolakis, A. & York, A.P.E., 2016. "Reducing CO2 footprint through synergies in carbon free energy vectors and low carbon fuels," Energy, Elsevier, vol. 112(C), pages 976-983.
    4. Zhang, Yanzhi & Xu, Leilei & Zhu, Yizi & Xu, Shijie & Bai, Xue-Song, 2023. "Numerical study on liquid ammonia direct injection spray characteristics under engine-relevant conditions," Applied Energy, Elsevier, vol. 334(C).
    5. Lianmei Guo & Jianjun Zhu & Laibin Fu & Zhixin Li & Fanfan Liu & Zilin Wang & Xiangyang Liu & Qinqiang Dong, 2023. "Effects of Pre-Injection Strategy on Combustion Characteristics of Ammonia/Diesel Dual-Fuel Compression Ignition Mode," Energies, MDPI, vol. 16(23), pages 1-16, November.
    6. Xingyu Sun & Mengjia Li & Jincheng Li & Xiongbo Duan & Can Wang & Weifan Luo & Haifeng Liu & Jingping Liu, 2023. "Nitrogen Oxides and Ammonia Removal Analysis Based on Three-Dimensional Ammonia-Diesel Dual Fuel Engine Coupled with One-Dimensional SCR Model," Energies, MDPI, vol. 16(2), pages 1-18, January.
    7. Wang, Binbin & Wang, Hechun & Duan, Baoyin & Yang, Chuanlei & Hu, Deng & Wang, Yinyan, 2023. "Effect of ammonia/hydrogen mixture ratio on engine combustion and emission performance at different inlet temperatures," Energy, Elsevier, vol. 272(C).
    8. Liu, Shang & Lin, Zhelong & Zhang, Hao & Lei, Nuo & Qi, Yunliang & Wang, Zhi, 2023. "Impact of ammonia addition on knock resistance and combustion performance in a gasoline engine with high compression ratio," Energy, Elsevier, vol. 262(PA).
    9. Tay, Kun Lin & Yang, Wenming & Li, Jing & Zhou, Dezhi & Yu, Wenbin & Zhao, Feiyang & Chou, Siaw Kiang & Mohan, Balaji, 2017. "Numerical investigation on the combustion and emissions of a kerosene-diesel fueled compression ignition engine assisted by ammonia fumigation," Applied Energy, Elsevier, vol. 204(C), pages 1476-1488.
    10. Li, Jun & Huang, Hongyu & Kobayashi, Noriyuki & He, Zhaohong & Osaka, Yugo & Zeng, Tao, 2015. "Numerical study on effect of oxygen content in combustion air on ammonia combustion," Energy, Elsevier, vol. 93(P2), pages 2053-2068.
    11. Ezzat, M.F & Dincer, I., 2018. "Development and assessment of a new hybrid vehicle with ammonia and hydrogen," Applied Energy, Elsevier, vol. 219(C), pages 226-239.
    12. Chen, Danan & Li, Jun & Li, Xing & Deng, Lisheng & He, Zhaohong & Huang, Hongyu & Kobayashi, Noriyuki, 2023. "Study on combustion characteristics of hydrogen addition on ammonia flame at a porous burner," Energy, Elsevier, vol. 263(PA).
    13. Kang, Yinhu & Wang, Quanhai & Lu, Xiaofeng & Wan, Hu & Ji, Xuanyu & Wang, Hu & Guo, Qiang & Yan, Jin & Zhou, Jinliang, 2015. "Experimental and numerical study on NOx and CO emission characteristics of dimethyl ether/air jet diffusion flame," Applied Energy, Elsevier, vol. 149(C), pages 204-224.
    14. Wang, Ying & Xiao, Fan & Zhao, Yuwei & Li, Dongchang & Lei, Xiong, 2015. "Study on cycle-by-cycle variations in a diesel engine with dimethyl ether as port premixing fuel," Applied Energy, Elsevier, vol. 143(C), pages 58-70.
    15. Ryu, Kyunghyun & Zacharakis-Jutz, George E. & Kong, Song-Charng, 2014. "Effects of gaseous ammonia direct injection on performance characteristics of a spark-ignition engine," Applied Energy, Elsevier, vol. 116(C), pages 206-215.
    16. Fengshuo He & Xiumin Yu & Yaodong Du & Zhen Shang & Zezhou Guo & Guanting Li & Decheng Li, 2019. "Inner Selective Non-Catalytic Reduction Strategy for Nitrogen Oxides Abatement: Investigation of Ammonia Aqueous Solution Direct Injection with an SI Engine Model," Energies, MDPI, vol. 12(14), pages 1-18, July.
    17. Gen Chen & Ugochukwu Ngwaka & Dawei Wu & Mingqiang Li, 2024. "Performance and Emission Optimisation of an Ammonia/Hydrogen Fuelled Linear Joule Engine Generator," Energies, MDPI, vol. 17(6), pages 1-21, March.
    18. Chiong, Meng-Choung & Kang, Hooi-Siang & Shaharuddin, Nik Mohd Ridzuan & Mat, Shabudin & Quen, Lee Kee & Ten, Ki-Hong & Ong, Muk Chen, 2021. "Challenges and opportunities of marine propulsion with alternative fuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    19. Chen, Chen & Liu, Dong, 2023. "Review of effects of zero-carbon fuel ammonia addition on soot formation in combustion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 185(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ryu, Kyunghyun & Zacharakis-Jutz, George E. & Kong, Song-Charng, 2014. "Effects of gaseous ammonia direct injection on performance characteristics of a spark-ignition engine," Applied Energy, Elsevier, vol. 116(C), pages 206-215.
    2. Ryu, Kyunghyun, 2013. "Effects of pilot injection timing on the combustion and emissions characteristics in a diesel engine using biodiesel–CNG dual fuel," Applied Energy, Elsevier, vol. 111(C), pages 721-730.
    3. Ezzat, M.F & Dincer, I., 2018. "Development and assessment of a new hybrid vehicle with ammonia and hydrogen," Applied Energy, Elsevier, vol. 219(C), pages 226-239.
    4. Tan, Pi-qiang & Ruan, Shuai-shuai & Hu, Zhi-yuan & Lou, Di-ming & Li, Hu, 2014. "Particle number emissions from a light-duty diesel engine with biodiesel fuels under transient-state operating conditions," Applied Energy, Elsevier, vol. 113(C), pages 22-31.
    5. Chintala, V. & Subramanian, K.A., 2015. "Experimental investigations on effect of different compression ratios on enhancement of maximum hydrogen energy share in a compression ignition engine under dual-fuel mode," Energy, Elsevier, vol. 87(C), pages 448-462.
    6. Chintala, V. & Subramanian, K.A., 2017. "Experimental investigation of autoignition of hydrogen-air charge in a compression ignition engine under dual-fuel mode," Energy, Elsevier, vol. 138(C), pages 197-209.
    7. M. Faizal & L. S. Chuah & C. Lee & A. Hameed & J. Lee & M. Shankar, 2019. "Review Of Hydrogen Fuel For Internal Combustion Engines," Journal of Mechanical Engineering Research & Developments (JMERD), Zibeline International Publishing, vol. 42(3), pages 35-46, April.
    8. Varatharajan, K. & Cheralathan, M., 2012. "Influence of fuel properties and composition on NOx emissions from biodiesel powered diesel engines: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 3702-3710.
    9. Hasannuddin, A.K. & Wira, J.Y. & Sarah, S. & Ahmad, M.I. & Aizam, S.A. & Aiman, M.A.B. & Watanabe, S. & Hirofumi, N. & Azrin, M.A., 2016. "Durability studies of single cylinder diesel engine running on emulsion fuel," Energy, Elsevier, vol. 94(C), pages 557-568.
    10. Armas, Octavio & García-Contreras, Reyes & Ramos, Ángel, 2013. "Impact of alternative fuels on performance and pollutant emissions of a light duty engine tested under the new European driving cycle," Applied Energy, Elsevier, vol. 107(C), pages 183-190.
    11. Ji, Changwei & Wang, Shuofeng & Zhang, Bo, 2012. "Performance of a hybrid hydrogen–gasoline engine under various operating conditions," Applied Energy, Elsevier, vol. 97(C), pages 584-589.
    12. Sastre, C.M. & Maletta, E. & González-Arechavala, Y. & Ciria, P. & Santos, A.M. & del Val, A. & Pérez, P. & Carrasco, J., 2014. "Centralised electricity production from winter cereals biomass grown under central-northern Spain conditions: Global warming and energy yield assessments," Applied Energy, Elsevier, vol. 114(C), pages 737-748.
    13. Mancaruso, Ezio & Sequino, Luigi & Vaglieco, Bianca Maria, 2013. "GTL (Gas To Liquid) and RME (Rapeseed Methyl Ester) combustion analysis in a transparent CI (compression ignition) engine by means of IR (infrared) digital imaging," Energy, Elsevier, vol. 58(C), pages 185-191.
    14. Chintala, Venkateswarlu & Subramanian, K.A., 2017. "A comprehensive review on utilization of hydrogen in a compression ignition engine under dual fuel mode," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 472-491.
    15. Chattopadhyay, Soham & Sen, Ramkrishna, 2013. "Fuel properties, engine performance and environmental benefits of biodiesel produced by a green process," Applied Energy, Elsevier, vol. 105(C), pages 319-326.
    16. Boopathi, D. & Thiyagarajan, S. & Edwin Geo, V. & Madhankumar, S. & Gheith, R., 2018. "Effect of geraniol on performance, emission and combustion characteristics of CI engine fuelled with gutter oil obtained from different sources," Energy, Elsevier, vol. 157(C), pages 391-401.
    17. Aydın, F. & Öğüt, H., 2017. "Effects of using ethanol-biodiesel-diesel fuel in single cylinder diesel engine to engine performance and emissions," Renewable Energy, Elsevier, vol. 103(C), pages 688-694.
    18. Ahmad, Zeeshan & Kaario, Ossi & Qiang, Cheng & Vuorinen, Ville & Larmi, Martti, 2019. "A parametric investigation of diesel/methane dual-fuel combustion progression/stages in a heavy-duty optical engine," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    19. Deb, Madhujit & Paul, Abhishek & Debroy, Durbadal & Sastry, G.R.K. & Panua, Raj Sekhar & Bose, P.K., 2015. "An experimental investigation of performance-emission trade off characteristics of a CI engine using hydrogen as dual fuel," Energy, Elsevier, vol. 85(C), pages 569-585.
    20. Sajjad, H. & Masjuki, H.H. & Varman, M. & Kalam, M.A. & Arbab, M.I. & Imtenan, S. & Rahman, S.M. Ashrafur, 2014. "Engine combustion, performance and emission characteristics of gas to liquid (GTL) fuels and its blends with diesel and bio-diesel," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 961-986.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:113:y:2014:i:c:p:488-499. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.