IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v88y2011i12p4264-4273.html
   My bibliography  Save this article

LNG: An eco-friendly cryogenic fuel for sustainable development

Author

Listed:
  • Kumar, Satish
  • Kwon, Hyouk-Tae
  • Choi, Kwang-Ho
  • Lim, Wonsub
  • Cho, Jae Hyun
  • Tak, Kyungjae
  • Moon, Il

Abstract

As the demand of natural gas has sharply increased in the last two decades at the global level, the transportation of natural gas from different parts (gas producing to the consuming areas) of the world has become more significant. Liquefaction of natural gas provides a safer and economical alternative for transportation and also increases its storage capabilities. The liquefaction process requires the natural gas to be cooled using various methods of cryogenic processes and also be depressurized to atmospheric conditions for easier and safer storage. LNG transported in cryogenic vessels offers several advantages over pipeline transport of natural gas especially when the gas consuming areas are far away from the gas producing areas. Moreover, LNG as an automobile fuel has a definite edge over other fuels.

Suggested Citation

  • Kumar, Satish & Kwon, Hyouk-Tae & Choi, Kwang-Ho & Lim, Wonsub & Cho, Jae Hyun & Tak, Kyungjae & Moon, Il, 2011. "LNG: An eco-friendly cryogenic fuel for sustainable development," Applied Energy, Elsevier, vol. 88(12), pages 4264-4273.
  • Handle: RePEc:eee:appene:v:88:y:2011:i:12:p:4264-4273
    DOI: 10.1016/j.apenergy.2011.06.035
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261911004247
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chen, Haisheng & Ding, Yulong & Li, Yongliang & Zhang, Xinjing & Tan, Chunqing, 2011. "Air fuelled zero emission road transportation: A comparative study," Applied Energy, Elsevier, vol. 88(1), pages 337-342, January.
    2. Szargut, Jan & Szczygiel, Ireneusz, 2009. "Utilization of the cryogenic exergy of liquid natural gas (LNG) for the production of electricity," Energy, Elsevier, vol. 34(7), pages 827-837.
    3. Deng, Shimin & Jin, Hongguang & Cai, Ruixian & Lin, Rumou, 2004. "Novel cogeneration power system with liquefied natural gas (LNG) cryogenic exergy utilization," Energy, Elsevier, vol. 29(4), pages 497-512.
    4. Miana, Mario & Hoyo, Rafael del & Rodrigálvarez, Vega & Valdés, José Ramón & Llorens, Raúl, 2010. "Calculation models for prediction of Liquefied Natural Gas (LNG) ageing during ship transportation," Applied Energy, Elsevier, vol. 87(5), pages 1687-1700, May.
    5. Hekkert, Marko P. & Hendriks, Franka H. J. F. & Faaij, Andre P. C. & Neelis, Maarten L., 2005. "Natural gas as an alternative to crude oil in automotive fuel chains well-to-wheel analysis and transition strategy development," Energy Policy, Elsevier, vol. 33(5), pages 579-594, March.
    6. Okamura, Tomohito & Furukawa, Michinobu & Ishitani, Hisashi, 2007. "Future forecast for life-cycle greenhouse gas emissions of LNG and city gas 13A," Applied Energy, Elsevier, vol. 84(11), pages 1136-1149, November.
    7. -, 2008. "The global information society: a statistical view," Sede de la CEPAL en Santiago (Estudios e Investigaciones) 32785, Naciones Unidas Comisión Económica para América Latina y el Caribe (CEPAL).
    8. AfDB AfDB, . "The AfDB Statistics Pocketbook 2008," AfDB Statistics Pocketbook, African Development Bank, number 3 edited by Koua Louis Kouakou.
    9. Aspelund, Audun & Gundersen, Truls, 2009. "A liquefied energy chain for transport and utilization of natural gas for power production with CO2 capture and storage - Part 1," Applied Energy, Elsevier, vol. 86(6), pages 781-792, June.
    10. Gorini de Oliveira, Ricardo & de Moraes Marreco, Juliana, 2006. "Natural gas power generation in Brazil: New window of opportunity?," Energy Policy, Elsevier, vol. 34(15), pages 2361-2372, October.
    11. Arteconi, A. & Brandoni, C. & Evangelista, D. & Polonara, F., 2010. "Life-cycle greenhouse gas analysis of LNG as a heavy vehicle fuel in Europe," Applied Energy, Elsevier, vol. 87(6), pages 2005-2013, June.
    12. Zhang, Na & Lior, Noam, 2006. "A novel near-zero CO2 emission thermal cycle with LNG cryogenic exergy utilization," Energy, Elsevier, vol. 31(10), pages 1666-1679.
    13. Kumar, Satish & Kwon, Hyouk-Tae & Choi, Kwang-Ho & Hyun Cho, Jae & Lim, Wonsub & Moon, Il, 2011. "Current status and future projections of LNG demand and supplies: A global prospective," Energy Policy, Elsevier, vol. 39(7), pages 4097-4104, July.
    14. Hondo, Hiroki, 2005. "Life cycle GHG emission analysis of power generation systems: Japanese case," Energy, Elsevier, vol. 30(11), pages 2042-2056.
    15. Weisser, Daniel, 2007. "A guide to life-cycle greenhouse gas (GHG) emissions from electric supply technologies," Energy, Elsevier, vol. 32(9), pages 1543-1559.
    16. Tamura, Itaru & Tanaka, Toshihide & Kagajo, Toshimasa & Kuwabara, Shigeru & Yoshioka, Tomoyuki & Nagata, Takahiro & Kurahashi, Kazuhiro & Ishitani, Hisashi, 2001. "Life cycle CO2 analysis of LNG and city gas," Applied Energy, Elsevier, vol. 68(3), pages 301-319, March.
    17. Parikh, Jyoti & Biswas, C.R. Dutta & Singh, Chandrashekhar & Singh, Vivek, 2009. "Natural Gas requirement by fertilizer sector in India," Energy, Elsevier, vol. 34(8), pages 954-961.
    18. Querol, E. & Gonzalez-Regueral, B. & García-Torrent, J. & Ramos, Alberto, 2011. "Available power generation cycles to be coupled with the liquid natural gas (LNG) vaporization process in a Spanish LNG terminal," Applied Energy, Elsevier, vol. 88(7), pages 2382-2390, July.
    19. Kannan, R. & Leong, K.C. & Osman, R. & Ho, H.K., 2007. "Life cycle energy, emissions and cost inventory of power generation technologies in Singapore," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(4), pages 702-715, May.
    20. Pascoli, Stefano Di & Femia, Aldo & Luzzati, Tommaso, 2001. "Natural gas, cars and the environment. A (relatively) 'clean' and cheap fuel looking for users," Ecological Economics, Elsevier, vol. 38(2), pages 179-189, August.
    Full references (including those not matched with items on IDEAS)

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:88:y:2011:i:12:p:4264-4273. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.