IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v240y2025ics096014812402233x.html
   My bibliography  Save this article

4E assessment of a geothermal-driven combined power and cooling system coupled with a liquefied natural gas cold energy recovery unit

Author

Listed:
  • Lin, Yaoting
  • Zhou, Wei
  • Chauhdary, Sohaib Tahir
  • Zuo, Wenshuai

Abstract

This study introduces an innovative interconnected structure for simultaneous cooling and power generation, incorporating hydrogen production through a double-flash geothermal cycle. The system integrates DFG cycle as upper subsystem with lower subsystems including a proton exchange membrane electrolyzer, liquefied natural gas cold recovery, Kalina power cycle, and an ammonia Rankine cycle. A thorough thermo-economic assessment was performed with Aspen HYSYS program. Findings demonstrate that the system is capable of generating 15,260 kW of cooling power, 30,640 kW of electrical power, and producing hydrogen at an output of 20.16 kg/h. The system's total energy efficiency is assessed at 28.91 %, while the exergy efficiency is evaluated at 76.39 %. The overall operational cost rate is projected at 607 $/h, with an exergy cost of 5.3 $/GJ. Additionally, implementation of this system results in an annual reduction of 189,898 kg of CO2 emissions and savings of 59,497 L of oil/year. Exergy analysis reveals that the LNG evaporator accounts for 68.1 % of the total irreversibility of 65,272 kW, suggesting that optimizing the heat exchanger effectiveness could significantly enhance system performance. This innovative design not only improves energy recovery but also contributes to sustainable hydrogen production, making it a viable alternative to fossil fuel-based systems.

Suggested Citation

  • Lin, Yaoting & Zhou, Wei & Chauhdary, Sohaib Tahir & Zuo, Wenshuai, 2025. "4E assessment of a geothermal-driven combined power and cooling system coupled with a liquefied natural gas cold energy recovery unit," Renewable Energy, Elsevier, vol. 240(C).
  • Handle: RePEc:eee:renene:v:240:y:2025:i:c:s096014812402233x
    DOI: 10.1016/j.renene.2024.122165
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S096014812402233X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2024.122165?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Li, Tailu & Qin, Haosen & Wang, Jianqiang & Gao, Xiang & Meng, Nan & Jia, Yanan & Liu, Qinghua, 2021. "Energetic and exergetic performance of a novel polygeneration energy system driven by geothermal energy and solar energy for power, hydrogen and domestic hot water," Renewable Energy, Elsevier, vol. 175(C), pages 318-336.
    2. Shengjun, Zhang & Huaixin, Wang & Tao, Guo, 2011. "Performance comparison and parametric optimization of subcritical Organic Rankine Cycle (ORC) and transcritical power cycle system for low-temperature geothermal power generation," Applied Energy, Elsevier, vol. 88(8), pages 2740-2754, August.
    3. Kelem, Ummu Rumeysa & Yilmaz, Fatih, 2024. "An innovative geothermal based multigeneration plant: Thermodynamic and economic assessment for sustainable outputs with compressed hydrogen," Energy, Elsevier, vol. 295(C).
    4. Mahmoudan, Alireza & Samadof, Parviz & Hosseinzadeh, Siamak & Garcia, Davide Astiaso, 2021. "A multigeneration cascade system using ground-source energy with cold recovery: 3E analyses and multi-objective optimization," Energy, Elsevier, vol. 233(C).
    5. Adriana Greco & Edison Gundabattini & Darius Gnanaraj Solomon & Raja Singh Rassiah & Claudia Masselli, 2022. "A Review on Geothermal Renewable Energy Systems for Eco-Friendly Air-Conditioning," Energies, MDPI, vol. 15(15), pages 1-17, July.
    6. Ebadollahi, Mohammad & Rostamzadeh, Hadi & Pedram, Mona Zamani & Ghaebi, Hadi & Amidpour, Majid, 2019. "Proposal and assessment of a new geothermal-based multigeneration system for cooling, heating, power, and hydrogen production, using LNG cold energy recovery," Renewable Energy, Elsevier, vol. 135(C), pages 66-87.
    7. Zhao, Yajing & Wang, Jiangfeng, 2016. "Exergoeconomic analysis and optimization of a flash-binary geothermal power system," Applied Energy, Elsevier, vol. 179(C), pages 159-170.
    8. Zhang, Qiang & Zhang, Ningqi & Zhu, Shengbo & Heydarian, Dariush, 2023. "Thermodynamic simulation and optimization of natural gas liquefaction cycle based on the common structure of organic rankine cycle," Energy, Elsevier, vol. 264(C).
    9. van der Ham, L.V. & Kjelstrup, S., 2010. "Exergy analysis of two cryogenic air separation processes," Energy, Elsevier, vol. 35(12), pages 4731-4739.
    10. Abdolalipouradl, Mehran & Mohammadkhani, Farzad & Khalilarya, Shahram, 2020. "A comparative analysis of novel combined flash-binary cycles for Sabalan geothermal wells: Thermodynamic and exergoeconomic viewpoints," Energy, Elsevier, vol. 209(C).
    11. Peng Yu & Yufeng Xu & Honghua Liu & Xinyu Liu & Jiani Fu & Meijun Xu & Dankun Zhou, 2024. "Regional-Scale Assessment of the Potential for Shallow Geothermal Energy Development Using Vertical Ground Source Heat Pumps," Energies, MDPI, vol. 17(17), pages 1-17, August.
    12. Shoaei, Mersad & Hajinezhad, Ahmad & Moosavian, Seyed Farhan, 2023. "Design, energy, exergy, economy, and environment (4E) analysis, and multi-objective optimization of a novel integrated energy system based on solar and geothermal resources," Energy, Elsevier, vol. 280(C).
    13. Ghaebi, Hadi & Parikhani, Towhid & Rostamzadeh, Hadi & Farhang, Behzad, 2017. "Thermodynamic and thermoeconomic analysis and optimization of a novel combined cooling and power (CCP) cycle by integrating of ejector refrigeration and Kalina cycles," Energy, Elsevier, vol. 139(C), pages 262-276.
    14. Chen, Shiyi & Lior, Noam & Xiang, Wenguo, 2015. "Coal gasification integration with solid oxide fuel cell and chemical looping combustion for high-efficiency power generation with inherent CO2 capture," Applied Energy, Elsevier, vol. 146(C), pages 298-312.
    15. Oveepsa Chakraborty & Sujit Roy & Biplab K. Debnath & Sushant Negi & Marc A. Rosen & Sadegh Safari & Mamdouh El Haj Assad & Rajat Gupta & Biplab Das, 2024. "Energy, exergy, environment and techno-economic analysis of parabolic trough collector: A comprehensive review," Energy & Environment, , vol. 35(2), pages 1118-1181, March.
    16. DeLovato, Nicolas & Sundarnath, Kavin & Cvijovic, Lazar & Kota, Krishna & Kuravi, Sarada, 2019. "A review of heat recovery applications for solar and geothermal power plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    17. Yang, Xiaoyu & Zhao, Hongbin, 2019. "Thermodynamic performance study of the SOFC-STIG distributed energy system fueled by LNG with CO2 recovery," Energy, Elsevier, vol. 186(C).
    18. Almahdi, M. & Dincer, I. & Rosen, M.A., 2016. "A new solar based multigeneration system with hot and cold thermal storages and hydrogen production," Renewable Energy, Elsevier, vol. 91(C), pages 302-314.
    19. Ansarinasab, Hojat & Hajabdollahi, Hassan & Fatimah, Manal, 2021. "Life cycle assessment (LCA) of a novel geothermal-based multigeneration system using LNG cold energy- integration of Kalina cycle, stirling engine, desalination unit and magnetic refrigeration system," Energy, Elsevier, vol. 231(C).
    20. sattari sadat, Seyed mohammad & Mirabdolah Lavasani, Arash & Ghaebi, Hadi, 2019. "Economic and thermodynamic evaluation of a new solid oxide fuel cell based polygeneration system," Energy, Elsevier, vol. 175(C), pages 515-533.
    21. Aridi, Rima & Faraj, Jalal & Ali, Samer & Lemenand, Thierry & khaled, Mahmoud, 2022. "A comprehensive review on hybrid heat recovery systems: Classifications, applications, pros and cons, and new systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jia, Qiaoran & Zhu, Zehua & Zhang, Tao & Liu, Xiwen & Li, Ding & Wang, Maotao & Wang, Min, 2024. "A novel cascade heat design for a geothermal energy-based combined power plant in integration with water electrolysis and ammonia synthesis processes: Comprehensive thermo-environ-economic analyses," Energy, Elsevier, vol. 311(C).
    2. Zhou, Xiao & Cai, Yangchao & Li, Xuetao, 2024. "Process arrangement and multi-aspect study of a novel environmentally-friendly multigeneration plant relying on a geothermal-based plant combined with the goswami cycle booted by kalina and desalinati," Energy, Elsevier, vol. 299(C).
    3. Yu, Siming & Chen, Rui & Zhao, Zhilong & Wei, Fang, 2025. "Multi-aspect evaluation and optimization of a tri-generation scheme integrating a geothermal power plant with a salinity-gradient solar pond," Energy, Elsevier, vol. 320(C).
    4. Mardan Dezfouli, Amir Hossein & Niroozadeh, Narjes & Jahangiri, Ali, 2023. "Energy, exergy, and exergoeconomic analysis and multi-objective optimization of a novel geothermal driven power generation system of combined transcritical CO2 and C5H12 ORCs coupled with LNG stream i," Energy, Elsevier, vol. 262(PB).
    5. Tan, Hua & Bo, Likang & Nutakki, Tirumala Uday Kumar & Agrawal, Manoj Kumar & Seikh, Asiful H. & Tahir Chauhdary, Sohaib & Shah, Nehad Ali & Ji, Tiancheng, 2024. "A comprehensive multi-variable approach for evaluating the feasibility of integration a novel heat recovery model into a gas turbine power plant, producing electricity, heat, and methanol," Energy, Elsevier, vol. 296(C).
    6. Moein Shamoushaki & Mehdi Aliehyaei & Farhad Taghizadeh-Hesary, 2021. "Energy, Exergy, Exergoeconomic, and Exergoenvironmental Assessment of Flash-Binary Geothermal Combined Cooling, Heating and Power Cycle," Energies, MDPI, vol. 14(15), pages 1-24, July.
    7. Mahmoudan, Alireza & Samadof, Parviz & Hosseinzadeh, Siamak & Garcia, Davide Astiaso, 2021. "A multigeneration cascade system using ground-source energy with cold recovery: 3E analyses and multi-objective optimization," Energy, Elsevier, vol. 233(C).
    8. Zoghi, Mohammad & Hosseinzadeh, Nasser & Gharaie, Saleh & Zare, Ali, 2025. "4E comprehensive comparison and optimization of different renewable power sources for green hydrogen production," Renewable Energy, Elsevier, vol. 240(C).
    9. Zhou, Xiao & Ding, Chunliang & Abed, Azher M. & Abdullaev, Sherzod & Ahmad, Sayed Fayaz & Fouad, Yasser & Dahari, Mahidzal & Mahariq, Ibrahim, 2024. "Techno-economic assessment and transient modeling of a solar-based multi-generation system for sustainable/clean coastal urban development," Renewable Energy, Elsevier, vol. 233(C).
    10. Ruiz-Casanova, Eduardo & Rubio-Maya, Carlos & Ambriz-Díaz, Víctor M. & Gutiérrez Martínez, A., 2024. "Energy, exergy and exergoeconomic analyses and ANN-based three-objective optimization of a supercritical CO2 recompression Brayton cycle driven by a high-temperature geothermal reservoir," Energy, Elsevier, vol. 311(C).
    11. Piadehrouhi, Forough & Ghorbani, Bahram & Miansari, Mehdi & Mehrpooya, Mehdi, 2019. "Development of a new integrated structure for simultaneous generation of power and liquid carbon dioxide using solar dish collectors," Energy, Elsevier, vol. 179(C), pages 938-959.
    12. Pazuki, Mohammad-Mahdi & Kolahi, Mohammad-Reza & Ebadollahi, Mohammad & Amidpour, Majid, 2024. "Enhancing efficiency in an innovative geothermal poly-generation system for electricity, cooling, and freshwater production through integrated multi-objective optimization: A holistic approach to ener," Energy, Elsevier, vol. 313(C).
    13. Li, Ruiheng & Xu, Dong & Tian, Hao & Zhu, Yiping, 2023. "Multi-objective study and optimization of a solar-boosted geothermal flash cycle integrated into an innovative combined power and desalinated water production process: Application of a case study," Energy, Elsevier, vol. 282(C).
    14. Hashemian, Nasim & Noorpoor, Alireza, 2022. "A geothermal-biomass powered multi-generation plant with freshwater and hydrogen generation options: Thermo-economic-environmental appraisals and multi-criteria optimization," Renewable Energy, Elsevier, vol. 198(C), pages 254-266.
    15. Mohammadzadeh Bina, Saeid & Jalilinasrabady, Saeid & Fujii, Hikari & Farabi-Asl, Hadi, 2018. "A comprehensive approach for wind power plant potential assessment, application to northwestern Iran," Energy, Elsevier, vol. 164(C), pages 344-358.
    16. Meng, Nan & Li, Tailu & Wang, Jianqiang & Jia, Yanan & Liu, Qinghua & Qin, Haosen, 2020. "Synergetic mechanism of fracture properties and system configuration on techno-economic performance of enhanced geothermal system for power generation during life cycle," Renewable Energy, Elsevier, vol. 152(C), pages 910-924.
    17. Mehrenjani, Javad Rezazadeh & Shirzad, Amirali & Adouli, Arman & Gharehghani, Ayat, 2024. "Data-driven optimization of two novel geothermal-powered systems integrating LNG regasification with thermoelectric generation for eco-friendly seawater desalination and data center cooling," Energy, Elsevier, vol. 313(C).
    18. Lu, Xinli & Zhao, Yangyang & Zhu, Jialing & Zhang, Wei, 2018. "Optimization and applicability of compound power cycles for enhanced geothermal systems," Applied Energy, Elsevier, vol. 229(C), pages 128-141.
    19. Xie, Jingxuan & Wang, Jiansheng, 2022. "Compatibility investigation and techno-economic performance optimization of whole geothermal power generation system," Applied Energy, Elsevier, vol. 328(C).
    20. Olusola Bamisile & Qi Huang & Paul O. K. Anane & Mustafa Dagbasi, 2019. "Performance Analyses of a Renewable Energy Powered System for Trigeneration," Sustainability, MDPI, vol. 11(21), pages 1-15, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:240:y:2025:i:c:s096014812402233x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.