IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v240y2025ics0960148124022845.html
   My bibliography  Save this article

Optimization and techno-economic-environmental assessments of a biomass-powered multi-generation plant for hydrogen and freshwater production

Author

Listed:
  • Nanvaei Qeshmi, Nasrin
  • Mirabdolah Lavasani, Arash
  • Vahabi, Mohammad
  • salehi, Gholamreza
  • Nimafar, Mohammad

Abstract

This study investigates a novel biomass-powered multi-generation plant designed to produce electricity, heating, cooling, hydrogen, and freshwater. The plant's performance was analyzed using a multi-objective optimization approach, focusing on its exergoeconomic and exergoenvironmental aspects. The thermoeconomic analysis was conducted using the Specific Exergy Costing (SPECO) approach, while the thermodynamic evaluation was based on exergy analysis. For the exergoenvironmental evaluation, the Eco-indicator 99 was employed as a practical instrument to assess the environmental performance of the plant. Key variables, including gasification temperature, combustion pressure and temperature, and injected steam temperature, were adjusted to improve efficiency. In the base case, the plant generated 2806 kW of net power, 239.4 kW of heating, 1725 kW of cooling, 20 kg of hydrogen per day, and 3.6 cubic meters of freshwater per hour. The gasifier and heat exchanger were identified as the primary sources of inefficiency, contributing to significant exergy losses. Moreover, the cumulative product exergy unit and the exergoenvironmental impact per exergy unit of all products are computed at 0.083 $/kWh and 28.59 mpts/kWh respectively. Optimization efforts demonstrated that cost and environmental impact decreased in optimal performance of the plant. These trade-offs underscore the importance of balancing economic and environmental factors. This research offers valuable insights into the potential of biomass-powered systems for sustainable multi-generation applications.

Suggested Citation

  • Nanvaei Qeshmi, Nasrin & Mirabdolah Lavasani, Arash & Vahabi, Mohammad & salehi, Gholamreza & Nimafar, Mohammad, 2025. "Optimization and techno-economic-environmental assessments of a biomass-powered multi-generation plant for hydrogen and freshwater production," Renewable Energy, Elsevier, vol. 240(C).
  • Handle: RePEc:eee:renene:v:240:y:2025:i:c:s0960148124022845
    DOI: 10.1016/j.renene.2024.122216
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148124022845
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2024.122216?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cao, Yan & Dhahad, Hayder A. & Alsharif, Sameer & Sharma, Kamal & El.Shafy, Asem Saleh & Farhang, Babak & Mohammed, Adil Hussein, 2022. "Multi-objective optimizations and exergoeconomic analyses of a high-efficient bi-evaporator multigeneration system with freshwater unit," Renewable Energy, Elsevier, vol. 191(C), pages 699-714.
    2. Li, Huabin & Tao, Ye & Zhang, Yang & Fu, Hong, 2022. "Two-objective optimization of a hybrid solar-geothermal system with thermal energy storage for power, hydrogen and freshwater production based on transcritical CO2 cycle," Renewable Energy, Elsevier, vol. 183(C), pages 51-66.
    3. Yağlı, Hüseyin & Koç, Yıldız & Koç, Ali & Görgülü, Adnan & Tandiroğlu, Ahmet, 2016. "Parametric optimization and exergetic analysis comparison of subcritical and supercritical organic Rankine cycle (ORC) for biogas fuelled combined heat and power (CHP) engine exhaust gas waste heat," Energy, Elsevier, vol. 111(C), pages 923-932.
    4. Mei, Weiguang & Zhai, Rongrong & Zhao, Yingxin & Yao, Zhiqiang & Ma, Ning, 2024. "Exergoeconomic analysis and multi-objective optimization using NSGA-II in a novel dual-stage Selexol process of integrated gasification combined cycle," Energy, Elsevier, vol. 286(C).
    5. Ghaebi, Hadi & Parikhani, Towhid & Rostamzadeh, Hadi & Farhang, Behzad, 2017. "Thermodynamic and thermoeconomic analysis and optimization of a novel combined cooling and power (CCP) cycle by integrating of ejector refrigeration and Kalina cycles," Energy, Elsevier, vol. 139(C), pages 262-276.
    6. Ghaebi, Hadi & Yari, Mortaza & Gargari, Saeed Ghavami & Rostamzadeh, Hadi, 2019. "Thermodynamic modeling and optimization of a combined biogas steam reforming system and organic Rankine cycle for coproduction of power and hydrogen," Renewable Energy, Elsevier, vol. 130(C), pages 87-102.
    7. Akrami, Ehsan & Chitsaz, Ata & Nami, Hossein & Mahmoudi, S.M.S., 2017. "Energetic and exergoeconomic assessment of a multi-generation energy system based on indirect use of geothermal energy," Energy, Elsevier, vol. 124(C), pages 625-639.
    8. Parisa Heidarnejad & Hadi Genceli & Nasim Hashemian & Mustafa Asker & Mohammad Al-Rawi, 2024. "Biomass-Fueled Organic Rankine Cycles: State of the Art and Future Trends," Energies, MDPI, vol. 17(15), pages 1-30, August.
    9. Hashemian, Nasim & Noorpoor, Alireza, 2022. "A geothermal-biomass powered multi-generation plant with freshwater and hydrogen generation options: Thermo-economic-environmental appraisals and multi-criteria optimization," Renewable Energy, Elsevier, vol. 198(C), pages 254-266.
    10. Feili, Milad & Rostamzadeh, Hadi & Ghaebi, Hadi, 2022. "Thermo-mechanical energy level approach integrated with exergoeconomic optimization for realistic cost evaluation of a novel micro-CCHP system," Renewable Energy, Elsevier, vol. 190(C), pages 630-657.
    11. sattari sadat, Seyed mohammad & Mirabdolah Lavasani, Arash & Ghaebi, Hadi, 2019. "Economic and thermodynamic evaluation of a new solid oxide fuel cell based polygeneration system," Energy, Elsevier, vol. 175(C), pages 515-533.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sattari Sadat, Seyed Mohammad & Ghaebi, Hadi & Lavasani, Arash Mirabdolah, 2020. "4E analyses of an innovative polygeneration system based on SOFC," Renewable Energy, Elsevier, vol. 156(C), pages 986-1007.
    2. Lin, Yaoting & Zhou, Wei & Chauhdary, Sohaib Tahir & Zuo, Wenshuai, 2025. "4E assessment of a geothermal-driven combined power and cooling system coupled with a liquefied natural gas cold energy recovery unit," Renewable Energy, Elsevier, vol. 240(C).
    3. Farhang, Behzad & Ghaebi, Hadi & Naseri Gollo, Somayeh & Javani, Nader, 2024. "Thermo-economic analysis of an innovative multi-generation system based on ammonia synthesis," Renewable Energy, Elsevier, vol. 227(C).
    4. Zhao, Lu & Hai, Qing & Mei, Junlun, 2024. "An integrated approach to green power, cooling, and freshwater production from geothermal and solar energy sources; case study of Jiangsu, China," Energy, Elsevier, vol. 305(C).
    5. Hashemian, Nasim & Noorpoor, Alireza, 2022. "A geothermal-biomass powered multi-generation plant with freshwater and hydrogen generation options: Thermo-economic-environmental appraisals and multi-criteria optimization," Renewable Energy, Elsevier, vol. 198(C), pages 254-266.
    6. Soleymani, Elahe & Ghavami Gargari, Saeed & Ghaebi, Hadi, 2021. "Thermodynamic and thermoeconomic analysis of a novel power and hydrogen cogeneration cycle based on solid SOFC," Renewable Energy, Elsevier, vol. 177(C), pages 495-518.
    7. Ebadollahi, Mohammad & Rostamzadeh, Hadi & Pedram, Mona Zamani & Ghaebi, Hadi & Amidpour, Majid, 2019. "Proposal and assessment of a new geothermal-based multigeneration system for cooling, heating, power, and hydrogen production, using LNG cold energy recovery," Renewable Energy, Elsevier, vol. 135(C), pages 66-87.
    8. Zhang, Shaozhi & Luo, Jielin & Xu, Yiyang & Chen, Guangming & Wang, Qin, 2021. "Thermodynamic analysis of a combined cycle of ammonia-based battery and absorption refrigerator," Energy, Elsevier, vol. 220(C).
    9. Wang, Qinggang & Ming, Tingzhen & Chen, Qiong & Wu, Yongjia, 2024. "A novel TLFD-GA algorithm for multi-objectives optimization of ORC power plants with the effect of pressure drop considered," Energy, Elsevier, vol. 293(C).
    10. Yilmaz, Ceyhun & Sen, Ozan, 2024. "Feasibility of optimum energy use and cost analyses by applying artificial intelligence and genetic optimization methods in geothermal and solar energy-assisted multigeneration systems," Renewable Energy, Elsevier, vol. 237(PA).
    11. Behzadi, Amirmohammad & Gholamian, Ehsan & Houshfar, Ehsan & Habibollahzade, Ali, 2018. "Multi-objective optimization and exergoeconomic analysis of waste heat recovery from Tehran's waste-to-energy plant integrated with an ORC unit," Energy, Elsevier, vol. 160(C), pages 1055-1068.
    12. Razmi, Amir Reza & Arabkoohsar, Ahmad & Nami, Hossein, 2020. "Thermoeconomic analysis and multi-objective optimization of a novel hybrid absorption/recompression refrigeration system," Energy, Elsevier, vol. 210(C).
    13. Chitgar, Nazanin & Moghimi, Mahdi, 2020. "Design and evaluation of a novel multi-generation system based on SOFC-GT for electricity, fresh water and hydrogen production," Energy, Elsevier, vol. 197(C).
    14. Lin, Shuoyan & Wu, Zhixin & Xin, Jiayue & Fang, Zhongzheng, 2024. "Design and economic analysis of an innovative multi-generation system in different Countries with diverse economic contexts," Energy, Elsevier, vol. 310(C).
    15. Zhang, Mingming & Timoshin, Anton & Al-Ammar, Essam A. & Sillanpaa, Mika & Zhang, Guiju, 2023. "Power, cooling, freshwater, and hydrogen production system from a new integrated system working with the zeotropic mixture, using a flash-binary geothermal system," Energy, Elsevier, vol. 263(PD).
    16. Al-Rashed, Abdullah A.A.A. & Afrand, Masoud, 2021. "Multi-criteria exergoeconomic optimization for a combined gas turbine-supercritical CO2 plant with compressor intake cooling fueled by biogas from anaerobic digestion," Energy, Elsevier, vol. 223(C).
    17. Noorbakhsh, Hosein & Khoshgoftar Manesh, Mohammad Hasan & Amidpour, Majid, 2024. "Novel heavy fuel oil based IGCC polygeneration system based on integration with ejector cooling and heat recovery of the solid oxide fuel cell in adsorption desalination," Energy, Elsevier, vol. 312(C).
    18. Lee, Inkyu & Tester, Jefferson William & You, Fengqi, 2019. "Systems analysis, design, and optimization of geothermal energy systems for power production and polygeneration: State-of-the-art and future challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 109(C), pages 551-577.
    19. Zhang, Jianan & Qin, Kan & Li, Daijin & Luo, Kai & Dang, Jianjun, 2020. "Potential of Organic Rankine Cycles for Unmanned Underwater Vehicles," Energy, Elsevier, vol. 192(C).
    20. Du, Yang & Dai, Yiping, 2018. "Off-design performance analysis of a power-cooling cogeneration system combining a Kalina cycle with an ejector refrigeration cycle," Energy, Elsevier, vol. 161(C), pages 233-250.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:240:y:2025:i:c:s0960148124022845. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.