IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v158y2018icp396-416.html
   My bibliography  Save this article

Comparison of working fluids and cycle optimization for heat recovery ORCs from large internal combustion engines

Author

Listed:
  • Scaccabarozzi, Roberto
  • Tavano, Michele
  • Invernizzi, Costante Mario
  • Martelli, Emanuele

Abstract

This paper addresses the optimal working fluid selection for organic Rankine cycle recovering heat from heavy-duty internal combustion engines. Four cases are considered featuring two different engine exhaust temperatures (245 °C vs 354 °C) and two scenarios (maximum recovery of mechanical power vs. cogeneration of low-temperature heat). The analysis includes both pure fluids, including recently synthesized refrigerants, and binary mixtures. To perform a fair comparison between the different fluids, a computationally efficient cycle optimization approach, able to determine the maximum achievable efficiency for each working fluid, is adopted. The approach combines the evolutionary optimization algorithm PGS-COM with a rigorous heat integration methodology. The most efficient fluids are HCFO-1233zde, HFE-245fa2, HFO-1336mzz, HFE-347mcc, HFE-245cb2 and Novec 649 for the engine with lower temperature exhausts (reaching an ORC mechanical efficiency of 18.6–19.9%), and cyclopentane, ammonia, HCFO-1233zde, HFE-245fa2, HFO-1366mzz for the engine with higher temperature (reaching 23.76–22.70% efficiency). Compared to pure fluids, the use of optimized binary mixtures does not appear to lead a considerable efficiency gain.

Suggested Citation

  • Scaccabarozzi, Roberto & Tavano, Michele & Invernizzi, Costante Mario & Martelli, Emanuele, 2018. "Comparison of working fluids and cycle optimization for heat recovery ORCs from large internal combustion engines," Energy, Elsevier, vol. 158(C), pages 396-416.
  • Handle: RePEc:eee:energy:v:158:y:2018:i:c:p:396-416
    DOI: 10.1016/j.energy.2018.06.017
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544218310703
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2018.06.017?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Martelli, Emanuele & Capra, Federico & Consonni, Stefano, 2015. "Numerical optimization of Combined Heat and Power Organic Rankine Cycles – Part A: Design optimization," Energy, Elsevier, vol. 90(P1), pages 310-328.
    2. Patrick Linke & Athanasios I. Papadopoulos & Panos Seferlis, 2015. "Systematic Methods for Working Fluid Selection and the Design, Integration and Control of Organic Rankine Cycles—A Review," Energies, MDPI, vol. 8(6), pages 1-47, May.
    3. Shu, Gequn & Li, Xiaoning & Tian, Hua & Liang, Xingyu & Wei, Haiqiao & Wang, Xu, 2014. "Alkanes as working fluids for high-temperature exhaust heat recovery of diesel engine using organic Rankine cycle," Applied Energy, Elsevier, vol. 119(C), pages 204-217.
    4. Scaccabarozzi, Roberto & Gatti, Manuele & Martelli, Emanuele, 2016. "Thermodynamic analysis and numerical optimization of the NET Power oxy-combustion cycle," Applied Energy, Elsevier, vol. 178(C), pages 505-526.
    5. Elsido, Cristina & Bischi, Aldo & Silva, Paolo & Martelli, Emanuele, 2017. "Two-stage MINLP algorithm for the optimal synthesis and design of networks of CHP units," Energy, Elsevier, vol. 121(C), pages 403-426.
    6. Nord, Lars O. & Martelli, Emanuele & Bolland, Olav, 2014. "Weight and power optimization of steam bottoming cycle for offshore oil and gas installations," Energy, Elsevier, vol. 76(C), pages 891-898.
    7. Roy, J.P. & Misra, Ashok, 2012. "Parametric optimization and performance analysis of a regenerative Organic Rankine Cycle using R-123 for waste heat recovery," Energy, Elsevier, vol. 39(1), pages 227-235.
    8. Wang, E.H. & Zhang, H.G. & Fan, B.Y. & Ouyang, M.G. & Zhao, Y. & Mu, Q.H., 2011. "Study of working fluid selection of organic Rankine cycle (ORC) for engine waste heat recovery," Energy, Elsevier, vol. 36(5), pages 3406-3418.
    9. Kwak, Dong-Hun & Binns, Michael & Kim, Jin-Kuk, 2014. "Integrated design and optimization of technologies for utilizing low grade heat in process industries," Applied Energy, Elsevier, vol. 131(C), pages 307-322.
    10. Larsen, Ulrik & Sigthorsson, Oskar & Haglind, Fredrik, 2014. "A comparison of advanced heat recovery power cycles in a combined cycle for large ships," Energy, Elsevier, vol. 74(C), pages 260-268.
    11. Vaja, Iacopo & Gambarotta, Agostino, 2010. "Internal Combustion Engine (ICE) bottoming with Organic Rankine Cycles (ORCs)," Energy, Elsevier, vol. 35(2), pages 1084-1093.
    12. Larsen, Ulrik & Pierobon, Leonardo & Haglind, Fredrik & Gabrielii, Cecilia, 2013. "Design and optimisation of organic Rankine cycles for waste heat recovery in marine applications using the principles of natural selection," Energy, Elsevier, vol. 55(C), pages 803-812.
    13. Capra, Federico & Martelli, Emanuele, 2015. "Numerical optimization of combined heat and power Organic Rankine Cycles – Part B: Simultaneous design & part-load optimization," Energy, Elsevier, vol. 90(P1), pages 329-343.
    14. Hung, T.C. & Shai, T.Y. & Wang, S.K., 1997. "A review of organic rankine cycles (ORCs) for the recovery of low-grade waste heat," Energy, Elsevier, vol. 22(7), pages 661-667.
    15. Yu, Haoshui & Eason, John & Biegler, Lorenz T. & Feng, Xiao, 2017. "Simultaneous heat integration and techno-economic optimization of Organic Rankine Cycle (ORC) for multiple waste heat stream recovery," Energy, Elsevier, vol. 119(C), pages 322-333.
    16. Shu, Gequn & Gao, Yuanyuan & Tian, Hua & Wei, Haiqiao & Liang, Xingyu, 2014. "Study of mixtures based on hydrocarbons used in ORC (Organic Rankine Cycle) for engine waste heat recovery," Energy, Elsevier, vol. 74(C), pages 428-438.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Arslan, Muhammed & Yılmaz, Ceyhun, 2022. "Thermodynamic Optimization and Thermoeconomic Evaluation of Afyon Biogas Plant assisted by organic Rankine Cycle for waste heat recovery," Energy, Elsevier, vol. 248(C).
    2. Alexander García-Mariaca & Eva Llera-Sastresa, 2021. "Review on Carbon Capture in ICE Driven Transport," Energies, MDPI, vol. 14(21), pages 1-30, October.
    3. Catapano, F. & Frazzica, A. & Freni, A. & Manzan, M. & Micheli, D. & Palomba, V. & Sementa, P. & Vaglieco, B.M., 2022. "Development and experimental testing of an integrated prototype based on Stirling, ORC and a latent thermal energy storage system for waste heat recovery in naval application," Applied Energy, Elsevier, vol. 311(C).
    4. Costante M. Invernizzi & Abubakr Ayub & Gioele Di Marcoberardino & Paolo Iora, 2019. "Pure and Hydrocarbon Binary Mixtures as Possible Alternatives Working Fluids to the Usual Organic Rankine Cycles Biomass Conversion Systems," Energies, MDPI, vol. 12(21), pages 1-17, October.
    5. Le Brun, Niccolo & Simpson, Michael & Acha, Salvador & Shah, Nilay & Markides, Christos N., 2020. "Techno-economic potential of low-temperature, jacket-water heat recovery from stationary internal combustion engines with organic Rankine cycles: A cross-sector food-retail study," Applied Energy, Elsevier, vol. 274(C).
    6. Zhu, Sipeng & Zhang, Kun & Deng, Kangyao, 2020. "A review of waste heat recovery from the marine engine with highly efficient bottoming power cycles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 120(C).
    7. Galuppo, Francesco & Reiche, Thomas & Lemort, Vincent & Dufour, Pascal & Nadri, Madiha, 2021. "Organic Rankine Cycle based waste heat recovery modeling and control of the low pressure side using direct condensation and dedicated fans," Energy, Elsevier, vol. 216(C).
    8. Wang, Enhua & Mao, Jingwen & Zhang, Bo & Wang, Yongzhen, 2023. "On the CAMD method based on PC-SAFT for working fluid design of a high-temperature organic Rankine cycle," Energy, Elsevier, vol. 263(PD).
    9. Mahmoudan, Alireza & Samadof, Parviz & Hosseinzadeh, Siamak & Garcia, Davide Astiaso, 2021. "A multigeneration cascade system using ground-source energy with cold recovery: 3E analyses and multi-objective optimization," Energy, Elsevier, vol. 233(C).
    10. Sun, Zhixin & Huang, Yisheng & Tian, Na & Lin, Kui, 2023. "Performance improvement of ORC by breaking the barrier of ambient pressure," Energy, Elsevier, vol. 262(PA).
    11. Fanxiao, Meng & Enhua, Wang & Bo, Zhang, 2021. "Possibility of optimal efficiency prediction of an organic Rankine cycle based on molecular property method for high-temperature exhaust gases," Energy, Elsevier, vol. 222(C).
    12. Martelli, Emanuele & Freschini, Marco & Zatti, Matteo, 2020. "Optimization of renewable energy subsidy and carbon tax for multi energy systems using bilevel programming," Applied Energy, Elsevier, vol. 267(C).
    13. Liu, Peng & Shu, Gequn & Tian, Hua, 2019. "How to approach optimal practical Organic Rankine cycle (OP-ORC) by configuration modification for diesel engine waste heat recovery," Energy, Elsevier, vol. 174(C), pages 543-552.
    14. Wang, Chenfang & Li, Qingshan & Wang, Chunmei & Zhang, Yangjun & Zhuge, Weilin, 2021. "Thermodynamic analysis of a hydrogen fuel cell waste heat recovery system based on a zeotropic organic Rankine cycle," Energy, Elsevier, vol. 232(C).
    15. Alklaibi, A.M. & Lior, N., 2021. "Waste heat utilization from internal combustion engines for power augmentation and refrigeration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    16. Chagnon-Lessard, Noémie & Copeland, Colin & Mathieu-Potvin, François & Gosselin, Louis, 2020. "Maximizing specific work output extracted from engine exhaust with novel inverted Brayton cycles over a large range of operating conditions," Energy, Elsevier, vol. 191(C).
    17. Costante Invernizzi & Marco Binotti & Paola Bombarda & Gioele Di Marcoberardino & Paolo Iora & Giampaolo Manzolini, 2019. "Water Mixtures as Working Fluids in Organic Rankine Cycles," Energies, MDPI, vol. 12(13), pages 1-17, July.
    18. Jiménez-Arreola, Manuel & Wieland, Christoph & Romagnoli, Alessandro, 2019. "Direct vs indirect evaporation in Organic Rankine Cycle (ORC) systems: A comparison of the dynamic behavior for waste heat recovery of engine exhaust," Applied Energy, Elsevier, vol. 242(C), pages 439-452.
    19. Aldair Benavides Gamero & Josué Camargo Vanegas & Jorge Duarte Forero & Guillermo Valencia Ochoa & Rafael Diaz Herazo, 2023. "Advanced Exergo-Environmental Assessments of an Organic Rankine Cycle as Waste Heat Recovery System from a Natural Gas Engine," Energies, MDPI, vol. 16(7), pages 1-29, March.
    20. Guillaume Lhermet & Nicolas Tauveron & Nadia Caney & Quentin Blondel & Franck Morin, 2022. "A Recent Advance on Partial Evaporating Organic Rankine Cycle: Experimental Results on an Axial Turbine," Energies, MDPI, vol. 15(20), pages 1-21, October.
    21. Yu, Haoshui & Kim, Donghoi & Gundersen, Truls, 2019. "A study of working fluids for Organic Rankine Cycles (ORCs) operating across and below ambient temperature to utilize Liquefied Natural Gas (LNG) cold energy," Energy, Elsevier, vol. 167(C), pages 730-739.
    22. Mat Nawi, Z. & Kamarudin, S.K. & Sheikh Abdullah, S.R. & Lam, S.S., 2019. "The potential of exhaust waste heat recovery (WHR) from marine diesel engines via organic rankine cycle," Energy, Elsevier, vol. 166(C), pages 17-31.
    23. Khan, Muhammad Sajid & Huan, Qun & Yan, Mi & Ali, Mustajab & Noor, Obaid Ullah & Abid, Muhammad, 2022. "A novel configuration of solar integrated waste-to-energy incineration plant for multi-generational purpose: An effort for achieving maximum performance," Renewable Energy, Elsevier, vol. 194(C), pages 604-620.
    24. Xu, Weicong & Zhao, Ruikai & Deng, Shuai & Zhao, Li & Mao, Samuel S., 2021. "Is zeotropic working fluid a promising option for organic Rankine cycle: A quantitative evaluation based on literature data," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    25. Tian, Cong & Su, Chang & Yang, Chao & Wei, Xiwen & Pang, Peng & Xu, Jianguo, 2023. "Exergetic and economic evaluation of a novel integrated system for cogeneration of power and freshwater using waste heat recovery of natural gas combined cycle," Energy, Elsevier, vol. 264(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Youcef Redjeb & Khatima Kaabeche-Djerafi & Anna Stoppato & Alberto Benato, 2021. "The IRC-PD Tool: A Code to Design Steam and Organic Waste Heat Recovery Units," Energies, MDPI, vol. 14(18), pages 1-37, September.
    2. Martelli, Emanuele & Freschini, Marco & Zatti, Matteo, 2020. "Optimization of renewable energy subsidy and carbon tax for multi energy systems using bilevel programming," Applied Energy, Elsevier, vol. 267(C).
    3. Yang, Fubin & Cho, Heejin & Zhang, Hongguang & Zhang, Jian, 2017. "Thermoeconomic multi-objective optimization of a dual loop organic Rankine cycle (ORC) for CNG engine waste heat recovery," Applied Energy, Elsevier, vol. 205(C), pages 1100-1118.
    4. Song, Jian & Song, Yin & Gu, Chun-wei, 2015. "Thermodynamic analysis and performance optimization of an Organic Rankine Cycle (ORC) waste heat recovery system for marine diesel engines," Energy, Elsevier, vol. 82(C), pages 976-985.
    5. Bao, Junjiang & Zhao, Li, 2013. "A review of working fluid and expander selections for organic Rankine cycle," Renewable and Sustainable Energy Reviews, Elsevier, vol. 24(C), pages 325-342.
    6. Zhou, Jianzhao & Chu, Yin Ting & Ren, Jingzheng & Shen, Weifeng & He, Chang, 2023. "Integrating machine learning and mathematical programming for efficient optimization of operating conditions in organic Rankine cycle (ORC) based combined systems," Energy, Elsevier, vol. 281(C).
    7. Kermani, Maziar & Wallerand, Anna S. & Kantor, Ivan D. & Maréchal, François, 2018. "Generic superstructure synthesis of organic Rankine cycles for waste heat recovery in industrial processes," Applied Energy, Elsevier, vol. 212(C), pages 1203-1225.
    8. He, Chao & Liu, Chao & Zhou, Mengtong & Xie, Hui & Xu, Xiaoxiao & Wu, Shuangying & Li, Yourong, 2014. "A new selection principle of working fluids for subcritical organic Rankine cycle coupling with different heat sources," Energy, Elsevier, vol. 68(C), pages 283-291.
    9. Li, Tailu & Zhu, Jialing & Hu, Kaiyong & Kang, Zhenhua & Zhang, Wei, 2014. "Implementation of PDORC (parallel double-evaporator organic Rankine cycle) to enhance power output in oilfield," Energy, Elsevier, vol. 68(C), pages 680-687.
    10. Yang, Min-Hsiung & Yeh, Rong-Hua, 2015. "Thermo-economic optimization of an organic Rankine cycle system for large marine diesel engine waste heat recovery," Energy, Elsevier, vol. 82(C), pages 256-268.
    11. Xing, Hui & Spence, Stephen & Chen, Hua, 2020. "A comprehensive review on countermeasures for CO2 emissions from ships," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    12. Alklaibi, A.M. & Lior, N., 2021. "Waste heat utilization from internal combustion engines for power augmentation and refrigeration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    13. Pezzuolo, Alex & Benato, Alberto & Stoppato, Anna & Mirandola, Alberto, 2016. "The ORC-PD: A versatile tool for fluid selection and Organic Rankine Cycle unit design," Energy, Elsevier, vol. 102(C), pages 605-620.
    14. Magdalena Santos-Rodriguez, M. & Flores-Tlacuahuac, Antonio & Zavala, Victor M., 2017. "A stochastic optimization approach for the design of organic fluid mixtures for low-temperature heat recovery," Applied Energy, Elsevier, vol. 198(C), pages 145-159.
    15. Li, Jing & Alvi, Jahan Zeb & Pei, Gang & Su, Yuehong & Li, Pengcheng & Gao, Guangtao & Ji, Jie, 2016. "Modelling of organic Rankine cycle efficiency with respect to the equivalent hot side temperature," Energy, Elsevier, vol. 115(P1), pages 668-683.
    16. Galindo Noguera, Ana Lisbeth & Mendoza Castellanos, Luis Sebastian & Silva Lora, Electo Eduardo & Melian Cobas, Vladimir Rafael, 2018. "Optimum design of a hybrid diesel-ORC / photovoltaic system using PSO: Case study for the city of Cujubim, Brazil," Energy, Elsevier, vol. 142(C), pages 33-45.
    17. Yang, Min-Hsiung, 2016. "Optimizations of the waste heat recovery system for a large marine diesel engine based on transcritical Rankine cycle," Energy, Elsevier, vol. 113(C), pages 1109-1124.
    18. Bao, Junjiang & Zhao, Li, 2012. "Exergy analysis and parameter study on a novel auto-cascade Rankine cycle," Energy, Elsevier, vol. 48(1), pages 539-547.
    19. Liu, Peng & Shu, Gequn & Tian, Hua & Wang, Xuan & Yu, Zhigang, 2018. "Alkanes based two-stage expansion with interheating Organic Rankine cycle for multi-waste heat recovery of truck diesel engine," Energy, Elsevier, vol. 147(C), pages 337-350.
    20. Li, Ligeng & Tian, Hua & Shi, Lingfeng & Zhang, Yonghao & Shu, Gequn, 2022. "Reducing the operational fluctuation via splitting CO2 transcritical power cycle in engine waste heat recovery," Energy, Elsevier, vol. 252(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:158:y:2018:i:c:p:396-416. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.