IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i5p4273-d1082519.html
   My bibliography  Save this article

Thermodynamic Analysis and Optimization of the Micro-CCHP System with a Biomass Heat Source

Author

Listed:
  • Tua Halomoan Harahap

    (Department of Education of Mathematics, Universitas Muhammadiyah Sumatera Utara, Medan 62201, Indonesia)

  • Oriza Candra

    (Department Teknik Elektro, Universitas Negeri Padang, Padang 25131, Indonesia)

  • Younis A. Sabawi

    (Department of Mathematics, Faculty of Science and Health, Koya University, Koya 44023, Iraq
    Department of Mathematics Education, Faculty of Education, Tishk International University, Erbil 44001, Iraq)

  • Ai Kamil Kareem

    (Biomedical Engineering Department, Al-Mustaqbal University College, Hillah 51001, Iraq)

  • Karrar Shareef Mohsen

    (Information and Communication Technology Research Group, Scientific Research Center, Al-Ayen University, Thi-Qar 64011, Iraq)

  • Ahmed Hussien Alawadi

    (Computer Technical Engineering Department, College of Technical Engineering, The Islamic University, Najaf 54001, Iraq)

  • Reza Morovati

    (Department of Mechanics, Pardis Branch, Islamic Azad University, Pardis 8514143131, Iran)

  • Ehab Mahamoud Mohamed

    (Department of Electrical Engineering, College of Engineering in Wadi Alddwasir, Prince Sattam Bin Abdulaziz University, Wadi Alddwasir 11991, Saudi Arabia
    Department of Electrical Engineering, Aswan University, Aswan 81542, Egypt)

  • Imran Khan

    (Department of Electrical Engineering, University of Engineering & Technology, Peshawar 814, Pakistan)

  • Dag Øivind Madsen

    (USN School of Business, University of South-Eastern Norway, 3511 Hønefoss, Norway)

Abstract

In this article, new multiple-production systems based on the micro-combined cooling, heating and power (CCHP) cycle with biomass heat sources are presented. In this proposed system, absorption refrigeration cycle subsystems and a water softener system have been used to increase the efficiency of the basic cycle and reduce waste. Comprehensive thermodynamic modeling was carried out on the proposed system. The validation of subsystems and the optimization of the system via the genetic algorithm method was carried out using Engineering Equation Solver (EES) software. The results show that among the components of the system, the dehumidifier has the highest exergy destruction. The effect of the parameters of evaporator temperature 1, ammonia concentration, absorber temperature, heater temperature difference, generator 1 pressure and heat source temperature on the performance of the system was determined. Based on the parametric study, as the temperature of evaporator 1 increases, the energy efficiency of the system increases. The maximum values of the energy efficiency and exergy of the whole system in the range of heat source temperatures between 740 and 750 K are equal to 74.2% and 47.7%. The energy and exergy efficiencies of the system in the basic mode are equal to 70.68% and 44.32%, respectively, and in the optimization mode with the MOOD mode, they are 87.91 and 49.3, respectively.

Suggested Citation

  • Tua Halomoan Harahap & Oriza Candra & Younis A. Sabawi & Ai Kamil Kareem & Karrar Shareef Mohsen & Ahmed Hussien Alawadi & Reza Morovati & Ehab Mahamoud Mohamed & Imran Khan & Dag Øivind Madsen, 2023. "Thermodynamic Analysis and Optimization of the Micro-CCHP System with a Biomass Heat Source," Sustainability, MDPI, vol. 15(5), pages 1-15, February.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:5:p:4273-:d:1082519
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/5/4273/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/5/4273/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Geng, Donghan & Gao, Xiangjie, 2023. "Thermodynamic and exergoeconomic optimization of a novel cooling, desalination and power multigeneration system based on ocean thermal energy," Renewable Energy, Elsevier, vol. 202(C), pages 17-39.
    2. Al-Sulaiman, Fahad A. & Dincer, Ibrahim & Hamdullahpur, Feridun, 2012. "Energy and exergy analyses of a biomass trigeneration system using an organic Rankine cycle," Energy, Elsevier, vol. 45(1), pages 975-985.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jobel Jose & Rajesh Kanna Parthasarathy & Senthil Kumar Arumugam, 2023. "Energy and Exergy Analysis of a Combined Cooling Heating and Power System with Regeneration," Sustainability, MDPI, vol. 15(18), pages 1-17, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dabwan, Yousef N. & Pei, Gang & Gao, Guangtao & Li, Jing & Feng, Junsheng, 2019. "Performance analysis of integrated linear fresnel reflector with a conventional cooling, heat, and power tri-generation plant," Renewable Energy, Elsevier, vol. 138(C), pages 639-650.
    2. Sikarwar, Shailesh Singh & Surywanshi, Gajanan Dattarao & Patnaikuni, Venkata Suresh & Kakunuri, Manohar & Vooradi, Ramsagar, 2020. "Chemical looping combustion integrated Organic Rankine Cycled biomass-fired power plant – Energy and exergy analyses," Renewable Energy, Elsevier, vol. 155(C), pages 931-949.
    3. Ahmadi, Pouria & Dincer, Ibrahim & Rosen, Marc A., 2014. "Thermoeconomic multi-objective optimization of a novel biomass-based integrated energy system," Energy, Elsevier, vol. 68(C), pages 958-970.
    4. Dabwan, Yousef N. & Gang, Pei & Li, Jing & Gao, Guangtao & Feng, Junsheng, 2018. "Development and assessment of integrating parabolic trough collectors with gas turbine trigeneration system for producing electricity, chilled water, and freshwater," Energy, Elsevier, vol. 162(C), pages 364-379.
    5. Kerme, Esa Dube & Orfi, Jamel & Fung, Alan S. & Salilih, Elias M. & Khan, Salah Ud-Din & Alshehri, Hassan & Ali, Emad & Alrasheed, Mohammed, 2020. "Energetic and exergetic performance analysis of a solar driven power, desalination and cooling poly-generation system," Energy, Elsevier, vol. 196(C).
    6. Li, Jiaojiao & Zoghi, Mohammad & Zhao, Linfeng, 2022. "Thermo-economic assessment and optimization of a geothermal-driven tri-generation system for power, cooling, and hydrogen production," Energy, Elsevier, vol. 244(PB).
    7. Al Moussawi, Houssein & Fardoun, Farouk & Louahlia, Hasna, 2017. "Selection based on differences between cogeneration and trigeneration in various prime mover technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 491-511.
    8. Mehrabian, M.J. & Khoshgoftar Manesh, M.H., 2023. "4E, risk, diagnosis, and availability evaluation for optimal design of a novel biomass-solar-wind driven polygeneration system," Renewable Energy, Elsevier, vol. 219(P2).
    9. Braimakis, Konstantinos & Karellas, Sotirios, 2017. "Integrated thermoeconomic optimization of standard and regenerative ORC for different heat source types and capacities," Energy, Elsevier, vol. 121(C), pages 570-598.
    10. Wang, Jiang-Jiang & Yang, Kun & Xu, Zi-Long & Fu, Chao, 2015. "Energy and exergy analyses of an integrated CCHP system with biomass air gasification," Applied Energy, Elsevier, vol. 142(C), pages 317-327.
    11. Fong, K.F. & Lee, C.K., 2015. "Performance analysis of internal-combustion-engine primed trigeneration systems for use in high-rise office buildings in Hong Kong," Applied Energy, Elsevier, vol. 160(C), pages 793-801.
    12. Cao, Yan & Habibi, Hamed & Zoghi, Mohammad & Raise, Amir, 2021. "Waste heat recovery of a combined regenerative gas turbine - recompression supercritical CO2 Brayton cycle driven by a hybrid solar-biomass heat source for multi-generation purpose: 4E analysis and pa," Energy, Elsevier, vol. 236(C).
    13. Parisa Heidarnejad & Hadi Genceli & Nasim Hashemian & Mustafa Asker & Mohammad Al-Rawi, 2024. "Biomass-Fueled Organic Rankine Cycles: State of the Art and Future Trends," Energies, MDPI, vol. 17(15), pages 1-30, August.
    14. Eyidogan, Muharrem & Canka Kilic, Fatma & Kaya, Durmus & Coban, Volkan & Cagman, Selman, 2016. "Investigation of Organic Rankine Cycle (ORC) technologies in Turkey from the technical and economic point of view," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 885-895.
    15. Li, You-Rong & Du, Mei-Tang & Wu, Chun-Mei & Wu, Shuang-Ying & Liu, Chao & Xu, Jin-Liang, 2014. "Economical evaluation and optimization of subcritical organic Rankine cycle based on temperature matching analysis," Energy, Elsevier, vol. 68(C), pages 238-247.
    16. Dabwan, Yousef N. & Pei, Gang & Kwan, Trevor Hocksun & Zhao, Bin, 2021. "An innovative hybrid solar preheating intercooled gas turbine using parabolic trough collectors," Renewable Energy, Elsevier, vol. 179(C), pages 1009-1026.
    17. Mingzhang Pan & Huan Zhao & Dongwu Liang & Yan Zhu & Youcai Liang & Guangrui Bao, 2020. "A Review of the Cascade Refrigeration System," Energies, MDPI, vol. 13(9), pages 1-26, May.
    18. Jradi, M. & Riffat, S., 2014. "Tri-generation systems: Energy policies, prime movers, cooling technologies, configurations and operation strategies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 396-415.
    19. Peris, Bernardo & Navarro-Esbrí, Joaquín & Molés, Francisco & González, Manuel & Mota-Babiloni, Adrián, 2015. "Experimental characterization of an ORC (organic Rankine cycle) for power and CHP (combined heat and power) applications from low grade heat sources," Energy, Elsevier, vol. 82(C), pages 269-276.
    20. Mehr, A.S. & Moharramian, A. & Hossainpour, S. & Pavlov, Denis A., 2020. "Effect of blending hydrogen to biogas fuel driven from anaerobic digestion of wastewater on the performance of a solid oxide fuel cell system," Energy, Elsevier, vol. 202(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:5:p:4273-:d:1082519. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.