IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v273y2023ics0360544223006102.html
   My bibliography  Save this article

Theoretical analysis on extraction-ejection combined power and refrigeration cycle for ocean thermal energy conversion

Author

Listed:
  • Zhang, Zhixiang
  • Yuan, Han
  • Mei, Ning

Abstract

This study proposes a novel extraction–ejection combined power and refrigeration cycle for ocean thermal energy conversion (OTEC). Ammonia-water is utilized as the working fluid. By introducing a steam-turbine extraction-gas-driven ejector between the evaporator and the absorber, the gas flows into the absorber after it is cooled, thereby enabling the cycle to recover pressure-difference energy and produce both power and cooling outputs. A mathematical model is established for the energy and exergy analyses, and a genetic-algorithm-based optimal design was developed to determine the maximum exergy efficiency. Furthermore, a comparative study of traditional OTEC cycles is conducted. The results showed that at seawater temperatures of 30 °C and 5 °C, the refrigeration temperature reached −20 °C. Although the power efficiency of the proposed cycle was 0.85%, which is 3% lower than that of the traditional OTEC power cycles, the coefficient of performance and comprehensive efficiency, which represents the utilisation of exergy, reached up to 29.10% and 66.14%, respectively, which indicates its high energy utilisation performance. This novel cycle shows potential for OTEC, as it can satisfy both electricity and refrigeration demands.

Suggested Citation

  • Zhang, Zhixiang & Yuan, Han & Mei, Ning, 2023. "Theoretical analysis on extraction-ejection combined power and refrigeration cycle for ocean thermal energy conversion," Energy, Elsevier, vol. 273(C).
  • Handle: RePEc:eee:energy:v:273:y:2023:i:c:s0360544223006102
    DOI: 10.1016/j.energy.2023.127216
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223006102
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.127216?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhang, Ji & Zhang, Xiaomeng & Zhang, Zhixiang & Zhou, Peilin & Zhang, Yan & Yuan, Han, 2022. "Performance improvement of ocean thermal energy conversion organic Rankine cycle under temperature glide effect," Energy, Elsevier, vol. 246(C).
    2. Vera, D. & Baccioli, A. & Jurado, F. & Desideri, U., 2020. "Modeling and optimization of an ocean thermal energy conversion system for remote islands electrification," Renewable Energy, Elsevier, vol. 162(C), pages 1399-1414.
    3. Zabihian, Farshid & Fung, Alan S., 2011. "Review of marine renewable energies: Case study of Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(5), pages 2461-2474, June.
    4. Zhao, Dongpeng & Han, Changho & Cho, Wonhee & Zhao, Li & Kim, Yongchan, 2022. "Directly combining a power cycle and refrigeration cycle: Method and case study," Energy, Elsevier, vol. 259(C).
    5. Kazim, Ayoub, 2010. "Strategy for a sustainable development in the UAE through hydrogen energy," Renewable Energy, Elsevier, vol. 35(10), pages 2257-2269.
    6. Kumar, G. Praveen & Saravanan, R. & Coronas, Alberto, 2017. "Experimental studies on combined cooling and power system driven by low-grade heat sources," Energy, Elsevier, vol. 128(C), pages 801-812.
    7. Jung, Hoon & Hwang, Jungho, 2014. "Feasibility study of a combined Ocean Thermal Energy Conversion method in South Korea," Energy, Elsevier, vol. 75(C), pages 443-452.
    8. Souza, Roberto Valente de & Fernandes, Elisa Helena Leão & Lima de Azevedo, José Luiz & Passos, Mariana dos Santos & Corrêa, Rafaela Martins, 2020. "Potential for conversion of thermal energy in electrical energy: Highlighting the Brazilian Ocean Thermal Energy Park and the Inverse Anthropogenic Effect," Renewable Energy, Elsevier, vol. 161(C), pages 1155-1175.
    9. Li, Guang & Chang, Yuxue & Liu, Tao & Yu, Zhongliang & Liu, Zheyu & Liu, Fan & Ma, Shuqi & Weng, Yujing & Zhang, Yulong, 2020. "Hydrogen element flow and economic analyses of a coal direct chemical looping hydrogen generation process," Energy, Elsevier, vol. 206(C).
    10. Wang, Shujie & Yuan, Peng & Li, Dong & Jiao, Yuhe, 2011. "An overview of ocean renewable energy in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 91-111, January.
    11. Aydin, Hakan & Lee, Ho-Saeng & Kim, Hyeon-Ju & Shin, Seung Kyoon & Park, Keunhan, 2014. "Off-design performance analysis of a closed-cycle ocean thermal energy conversion system with solar thermal preheating and superheating," Renewable Energy, Elsevier, vol. 72(C), pages 154-163.
    12. Bernardoni, C. & Binotti, M. & Giostri, A., 2019. "Techno-economic analysis of closed OTEC cycles for power generation," Renewable Energy, Elsevier, vol. 132(C), pages 1018-1033.
    13. Kim, Gunwoo & Lee, Myung Eun & Lee, Kwang Soo & Park, Jin-Soon & Jeong, Weon Mu & Kang, Sok Kuh & Soh, Jae-Gwi & Kim, Hanna, 2012. "An overview of ocean renewable energy resources in Korea," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(4), pages 2278-2288.
    14. Rajagopalan, Krishnakumar & Nihous, Gérard C., 2013. "Estimates of global Ocean Thermal Energy Conversion (OTEC) resources using an ocean general circulation model," Renewable Energy, Elsevier, vol. 50(C), pages 532-540.
    15. Zereshkian, Sajjad & Mansoury, Dariush, 2021. "A study on the feasibility of using solar radiation energy and ocean thermal energy conversion to supply electricity for offshore oil and gas fields in the Caspian Sea," Renewable Energy, Elsevier, vol. 163(C), pages 66-77.
    16. Khan, N. & Kalair, A. & Abas, N. & Haider, A., 2017. "Review of ocean tidal, wave and thermal energy technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 590-604.
    17. Zhuang, Yu & Zhou, Congcong & Dong, Yachao & Du, Jian & Shen, Shengqiang, 2021. "A hierarchical optimization and design of double Kalina Cycles for waste heat recovery," Energy, Elsevier, vol. 219(C).
    18. Wang, Shule & Yang, Hanmin & Shi, Ziyi & Zaini, Ilman Nuran & Wen, Yuming & Jiang, Jianchun & Jönsson, Pär Göran & Yang, Weihong, 2022. "Renewable hydrogen production from the organic fraction of municipal solid waste through a novel carbon-negative process concept," Energy, Elsevier, vol. 252(C).
    19. Wang, Jiangfeng & Dai, Yiping & Gao, Lin, 2008. "Parametric analysis and optimization for a combined power and refrigeration cycle," Applied Energy, Elsevier, vol. 85(11), pages 1071-1085, November.
    20. VanZwieten, James H. & Rauchenstein, Lynn T. & Lee, Louis, 2017. "An assessment of Florida's ocean thermal energy conversion (OTEC) resource," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 683-691.
    21. Hemer, Mark A. & Manasseh, Richard & McInnes, Kathleen L. & Penesis, Irene & Pitman, Tracey, 2018. "Perspectives on a way forward for ocean renewable energy in Australia," Renewable Energy, Elsevier, vol. 127(C), pages 733-745.
    22. Faizal, Mohammed & Ahmed, M. Rafiuddin, 2013. "Experimental studies on a closed cycle demonstration OTEC plant working on small temperature difference," Renewable Energy, Elsevier, vol. 51(C), pages 234-240.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Qizhi Gao & Senyao Zhao & Zhixiang Zhang & Ji Zhang & Yuan Zhao & Yongchao Sun & Dezhi Li & Han Yuan, 2023. "Performance Analysis and Multi-Objective Optimization of a Cooling-Power-Desalination Combined Cycle for Shipboard Diesel Exhaust Heat Recovery," Sustainability, MDPI, vol. 15(24), pages 1-32, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hu, Huakun & Xue, Wendong & Jiang, Peng & Li, Yong, 2022. "Bibliometric analysis for ocean renewable energy: An comprehensive review for hotspots, frontiers, and emerging trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    2. Yang, Min-Hsiung & Yeh, Rong-Hua, 2022. "Investigation of the potential of R717 blends as working fluids in the organic Rankine cycle (ORC) for ocean thermal energy conversion (OTEC)," Energy, Elsevier, vol. 245(C).
    3. Wang, Guohui & Yang, Yanan & Wang, Shuxin & Zhang, Hongwei & Wang, Yanhui, 2019. "Efficiency analysis and experimental validation of the ocean thermal energy conversion with phase change material for underwater vehicle," Applied Energy, Elsevier, vol. 248(C), pages 475-488.
    4. Zhang, Ji & Zhang, Xiaomeng & Zhang, Zhixiang & Zhou, Peilin & Zhang, Yan & Yuan, Han, 2022. "Performance improvement of ocean thermal energy conversion organic Rankine cycle under temperature glide effect," Energy, Elsevier, vol. 246(C).
    5. Langer, Jannis & Infante Ferreira, Carlos & Quist, Jaco, 2022. "Is bigger always better? Designing economically feasible ocean thermal energy conversion systems using spatiotemporal resource data," Applied Energy, Elsevier, vol. 309(C).
    6. Hall, Kashawn & Kelly, Solange & Henry, Legena, 2022. "Site selection of Ocean Thermal Energy Conversion (OTEC) plants for Barbados," Renewable Energy, Elsevier, vol. 201(P2), pages 60-69.
    7. Mao, Liangjie & Wei, Changjiang & Zeng, Song & Cai, Mingjie, 2023. "Heat transfer mechanism of cold-water pipe in ocean thermal energy conversion system," Energy, Elsevier, vol. 269(C).
    8. Daniel Ganea & Valentin Amortila & Elena Mereuta & Eugen Rusu, 2017. "A Joint Evaluation of the Wind and Wave Energy Resources Close to the Greek Islands," Sustainability, MDPI, vol. 9(6), pages 1-22, June.
    9. Rusu, Liliana & Onea, Florin, 2017. "The performance of some state-of-the-art wave energy converters in locations with the worldwide highest wave power," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 1348-1362.
    10. Peng, Jingping & Ge, Yunzheng & Chen, Fengyun & Liu, Lei & Wu, Haoyu & Liu, Weimin, 2022. "Theoretical and experimental study on the performance of a high-efficiency thermodynamic cycle for ocean thermal energy conversion," Renewable Energy, Elsevier, vol. 185(C), pages 734-747.
    11. Trivedi, Ashish & Trivedi, Vibha & Pandey, Krishan Kumar & Chichi, Ouissal, 2023. "An interpretive model to assess the barriers to ocean energy toward blue economic development in India," Renewable Energy, Elsevier, vol. 211(C), pages 822-830.
    12. Zhang, Wei & Li, Ye & Wu, Xiaoni & Guo, Shihao, 2018. "Review of the applied mechanical problems in ocean thermal energy conversion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 231-244.
    13. Milad Shadman & Corbiniano Silva & Daiane Faller & Zhijia Wu & Luiz Paulo de Freitas Assad & Luiz Landau & Carlos Levi & Segen F. Estefen, 2019. "Ocean Renewable Energy Potential, Technology, and Deployments: A Case Study of Brazil," Energies, MDPI, vol. 12(19), pages 1-37, September.
    14. Khosravi, A. & Syri, Sanna & Assad, M.E.H. & Malekan, M., 2019. "Thermodynamic and economic analysis of a hybrid ocean thermal energy conversion/photovoltaic system with hydrogen-based energy storage system," Energy, Elsevier, vol. 172(C), pages 304-319.
    15. Fan, Chengcheng & Wu, Zhe & Wang, Jiadian & Chen, Yongping & Zhang, Chengbin, 2023. "Thermodynamic process control of ocean thermal energy conversion," Renewable Energy, Elsevier, vol. 210(C), pages 810-821.
    16. Ng, Kai-Wern & Lam, Wei-Haur & Pichiah, Saravanan, 2013. "A review on potential applications of carbon nanotubes in marine current turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 331-339.
    17. Hammar, Linus & Ehnberg, Jimmy & Mavume, Alberto & Cuamba, Boaventura C. & Molander, Sverker, 2012. "Renewable ocean energy in the Western Indian Ocean," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 4938-4950.
    18. Vaclav Novotny & David J. Szucs & Jan Špale & Hung-Yin Tsai & Michal Kolovratnik, 2021. "Absorption Power and Cooling Combined Cycle with an Aqueous Salt Solution as a Working Fluid and a Technically Feasible Configuration," Energies, MDPI, vol. 14(12), pages 1-26, June.
    19. Egidijus Kasiulis & Jens Peter Kofoed & Arvydas Povilaitis & Algirdas Radzevičius, 2017. "Spatial Distribution of the Baltic Sea Near-Shore Wave Power Potential along the Coast of Klaipėda, Lithuania," Energies, MDPI, vol. 10(12), pages 1-18, December.
    20. Guillermo Lopez & Maria de los Angeles Ortega Del Rosario & Arthur James & Humberto Alvarez, 2022. "Site Selection for Ocean Thermal Energy Conversion Plants (OTEC): A Case Study in Panama," Energies, MDPI, vol. 15(9), pages 1-24, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:273:y:2023:i:c:s0360544223006102. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.