IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v206y2020ics0360544220313505.html
   My bibliography  Save this article

Hydrogen element flow and economic analyses of a coal direct chemical looping hydrogen generation process

Author

Listed:
  • Li, Guang
  • Chang, Yuxue
  • Liu, Tao
  • Yu, Zhongliang
  • Liu, Zheyu
  • Liu, Fan
  • Ma, Shuqi
  • Weng, Yujing
  • Zhang, Yulong

Abstract

Coal direct chemical looping hydrogen generation (CDCLHG) is known as an attractive technique that converts coal into high purity H2 with inherent CO2 separation. In this paper, a CDCLHG system is developed and modeled. According to the prediction results, hydrogen element flow and economic performance of the CDCLHG system are researched. The study demonstrate that utilization efficiency of hydrogen element is 51.89%. By economic analysis, the results indicate that the calculated H2 producing cost of the CDCLHG system is 11.55 CNY/kg with coal price of 797 CNY/t and Fe based oxygen carrier price of 1986 CNY/t. Sensitivities to variables such as coal price, oxygen carrier price, water price and operating labor are researched. Coal price represents the most important sensitivity, while the sensitivity to water price and operating labor is relatively small. Additionally, H2 production from the CDCLHG process is only 3.0% more expensive than H2 production from natural gas chemical looping reforming with Fe based oxygen carrier. The CDCLHG process therefore appears to be an ideal option to obtain competitive hydrogen production.

Suggested Citation

  • Li, Guang & Chang, Yuxue & Liu, Tao & Yu, Zhongliang & Liu, Zheyu & Liu, Fan & Ma, Shuqi & Weng, Yujing & Zhang, Yulong, 2020. "Hydrogen element flow and economic analyses of a coal direct chemical looping hydrogen generation process," Energy, Elsevier, vol. 206(C).
  • Handle: RePEc:eee:energy:v:206:y:2020:i:c:s0360544220313505
    DOI: 10.1016/j.energy.2020.118243
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544220313505
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2020.118243?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhu, Lin & He, Yangdong & Li, Luling & Wu, Pengbin, 2018. "Tech-economic assessment of second-generation CCS: Chemical looping combustion," Energy, Elsevier, vol. 144(C), pages 915-927.
    2. Xiang, Dong & Zhou, Yunpeng, 2018. "Concept design and techno-economic performance of hydrogen and ammonia co-generation by coke-oven gas-pressure swing adsorption integrated with chemical looping hydrogen process," Applied Energy, Elsevier, vol. 229(C), pages 1024-1034.
    3. Li, Guang & Zhang, Ke & Yang, Bin & Liu, Fan & Weng, Yujing & Liu, Zheyu & Fang, Yitian, 2019. "Life cycle analysis of a coal to hydrogen process based on ash agglomerating fluidized bed gasification," Energy, Elsevier, vol. 174(C), pages 638-646.
    4. He, Yangdong & Zhu, Lin & Li, Luling & Rao, Dong, 2019. "Life-cycle assessment of SNG and power generation: The role of implement of chemical looping combustion for carbon capture," Energy, Elsevier, vol. 172(C), pages 777-786.
    5. Yang, Sheng & Liang, Jianeng & Yang, Siyu & Qian, Yu, 2016. "A novel cascade refrigeration process using waste heat and its application to coal-to-SNG," Energy, Elsevier, vol. 115(P1), pages 486-497.
    6. Machado, R.G. & Moreira, F.S. & Batista, F.R.X. & Ferreira, J.S. & Cardoso, V.L., 2018. "Repeated batch cycles as an alternative for hydrogen production by co-culture photofermentation," Energy, Elsevier, vol. 153(C), pages 861-869.
    7. Campanari, S. & Chiesa, P. & Manzolini, G. & Bedogni, S., 2014. "Economic analysis of CO2 capture from natural gas combined cycles using Molten Carbonate Fuel Cells," Applied Energy, Elsevier, vol. 130(C), pages 562-573.
    8. Nikolaidis, Pavlos & Poullikkas, Andreas, 2017. "A comparative overview of hydrogen production processes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 597-611.
    9. Kun, Zhang & He, Demin & Guan, Jun & Zhang, Qiumin, 2019. "Thermodynamic analysis of chemical looping gasification coupled with lignite pyrolysis," Energy, Elsevier, vol. 166(C), pages 807-818.
    10. Zhou, Huairong & Yang, Siyu & Xiao, Honghua & Yang, Qingchun & Qian, Yu & Gao, Li, 2016. "Modeling and techno-economic analysis of shale-to-liquid and coal-to-liquid fuels processes," Energy, Elsevier, vol. 109(C), pages 201-210.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Khasani, & Prasidha, Willie & Widyatama, Arif & Aziz, Muhammad, 2021. "Energy-saving and environmentally-benign integrated ammonia production system," Energy, Elsevier, vol. 235(C).
    2. Duan, Wenjun & Wu, Qinting & Li, Peishi & Cheng, Peiwen, 2022. "Techno-economic analysis of a novel full-chain blast furnace slag utilization system," Energy, Elsevier, vol. 242(C).
    3. Chang, Yuxue & Li, Guang & Ma, Shuqi & Zhao, Xiaolei & Li, Na & Zhou, Xing & Zhang, Yulong, 2022. "Effect of hierarchical pore structure of oxygen carrier on the performance of biomass chemical looping hydrogen generation," Energy, Elsevier, vol. 254(PB).
    4. Ángel Darío González-Delgado & Janet B. García-Martínez & Andrés F. Barajas-Solano, 2022. "A Technoeconomic Resilience and Exergy Analysis Approach for the Evaluation of a Vaccine Production Plant in North-East Colombia," Sustainability, MDPI, vol. 15(1), pages 1-16, December.
    5. Byun, Manhee & Choe, Changgwon & Cheon, Seunghyun & Lee, Aejin & Lim, Hankwon, 2022. "Statistical and stochastic feasibility studies of potential liquid organic hydrogen carriers in a membrane reactor for simultaneous hydrogen storage and production: Technical, economic, and environmen," Renewable Energy, Elsevier, vol. 195(C), pages 1393-1411.
    6. Zhang, Zhixiang & Yuan, Han & Mei, Ning, 2023. "Theoretical analysis on extraction-ejection combined power and refrigeration cycle for ocean thermal energy conversion," Energy, Elsevier, vol. 273(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Meng, Wenliang & Wang, Dongliang & Zhou, Huairong & Yang, Yong & Li, Hongwei & Liao, Zuwei & Yang, Siyu & Hong, Xiaodong & Li, Guixian, 2023. "Carbon dioxide from oxy-fuel coal-fired power plant integrated green ammonia for urea synthesis: Process modeling, system analysis, and techno-economic evaluation," Energy, Elsevier, vol. 278(C).
    2. Wang, Yuan & Zhu, Lin & He, Yangdong & Yu, Jianting & Zhang, Chaoli & Wang, Zi, 2023. "Comparative exergoeconomic analysis of atmosphere and pressurized CLC power plants coupled with supercritical CO2 cycle," Energy, Elsevier, vol. 265(C).
    3. Ren, Lei & Zhou, Sheng & Ou, Xunmin, 2020. "Life-cycle energy consumption and greenhouse-gas emissions of hydrogen supply chains for fuel-cell vehicles in China," Energy, Elsevier, vol. 209(C).
    4. Xiang, Dong & Huang, Weiqing & Huang, Peng, 2018. "A novel coke-oven gas-to-natural gas and hydrogen process by integrating chemical looping hydrogen with methanation," Energy, Elsevier, vol. 165(PB), pages 1024-1033.
    5. Barckholtz, Timothy A. & Taylor, Kevin M. & Narayanan, Sundar & Jolly, Stephen & Ghezel-Ayagh, Hossein, 2022. "Molten carbonate fuel cells for simultaneous CO2 capture, power generation, and H2 generation," Applied Energy, Elsevier, vol. 313(C).
    6. He, Yangdong & Zhu, Lin & Li, Luling & Rao, Dong, 2019. "Life-cycle assessment of SNG and power generation: The role of implement of chemical looping combustion for carbon capture," Energy, Elsevier, vol. 172(C), pages 777-786.
    7. Ferraren-De Cagalitan, D.D.T. & Abundo, M.L.S., 2021. "A review of biohydrogen production technology for application towards hydrogen fuel cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    8. Zhang, Dongqiang & Duan, Runhao & Li, Hongwei & Yang, Qingchun & Zhou, Huairong, 2020. "Optimal design, thermodynamic, cost and CO2 emission analyses of coal-to-methanol process integrated with chemical looping air separation and hydrogen technology," Energy, Elsevier, vol. 203(C).
    9. Sadeghi, Shayan & Ghandehariun, Samane, 2022. "A standalone solar thermochemical water splitting hydrogen plant with high-temperature molten salt: Thermodynamic and economic analyses and multi-objective optimization," Energy, Elsevier, vol. 240(C).
    10. Alves, Luís & Pereira, Vítor & Lagarteira, Tiago & Mendes, Adélio, 2021. "Catalytic methane decomposition to boost the energy transition: Scientific and technological advancements," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    11. Abadie, Luis Mª & Chamorro, José M., 2023. "Investment in wind-based hydrogen production under economic and physical uncertainties," Applied Energy, Elsevier, vol. 337(C).
    12. Samuel Simon Araya & Fan Zhou & Simon Lennart Sahlin & Sobi Thomas & Christian Jeppesen & Søren Knudsen Kær, 2019. "Fault Characterization of a Proton Exchange Membrane Fuel Cell Stack," Energies, MDPI, vol. 12(1), pages 1-17, January.
    13. Navas-Anguita, Zaira & García-Gusano, Diego & Iribarren, Diego, 2019. "A review of techno-economic data for road transportation fuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 11-26.
    14. Freida Ozavize Ayodele & Siti Indati Mustapa & Bamidele Victor Ayodele & Norsyahida Mohammad, 2020. "An Overview of Economic Analysis and Environmental Impacts of Natural Gas Conversion Technologies," Sustainability, MDPI, vol. 12(23), pages 1-18, December.
    15. Rajabi, Mahsa & Mehrpooya, Mehdi & Haibo, Zhao & Huang, Zhen, 2019. "Chemical looping technology in CHP (combined heat and power) and CCHP (combined cooling heating and power) systems: A critical review," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    16. Hegazy Rezk & Mokhtar Aly & Rania M. Ghoniem, 2023. "Robust Fuzzy Logic MPPT Using Gradient-Based Optimization for PEMFC Power System," Sustainability, MDPI, vol. 15(18), pages 1-18, September.
    17. Duan, Liqiang & Zhu, Jingnan & Yue, Long & Yang, Yongping, 2014. "Study on a gas-steam combined cycle system with CO2 capture by integrating molten carbonate fuel cell," Energy, Elsevier, vol. 74(C), pages 417-427.
    18. Iva Ridjan Skov & Noémi Schneider & Gerald Schweiger & Josef-Peter Schöggl & Alfred Posch, 2021. "Power-to-X in Denmark: An Analysis of Strengths, Weaknesses, Opportunities and Threats," Energies, MDPI, vol. 14(4), pages 1-14, February.
    19. Lee, Timothy & Fu, Jintao & Basile, Victoria & Corsi, John S. & Wang, Zeyu & Detsi, Eric, 2020. "Activated alumina as value-added byproduct from the hydrolysis of hierarchical nanoporous aluminum with pure water to generate hydrogen fuel," Renewable Energy, Elsevier, vol. 155(C), pages 189-196.
    20. Aasadnia, Majid & Mehrpooya, Mehdi, 2018. "Large-scale liquid hydrogen production methods and approaches: A review," Applied Energy, Elsevier, vol. 212(C), pages 57-83.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:206:y:2020:i:c:s0360544220313505. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.