IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v242y2022ics0360544221032989.html
   My bibliography  Save this article

Techno-economic analysis of a novel full-chain blast furnace slag utilization system

Author

Listed:
  • Duan, Wenjun
  • Wu, Qinting
  • Li, Peishi
  • Cheng, Peiwen

Abstract

As the main solid waste in the iron and steel industry, the waste heat recovery and comprehensive utilization of blast furnace slag had great significance for energy conservation and sustainable development. This paper proposed a novel full-chain blast furnace slag utilization system to solve the problem of waste heat recovery and high value-added production. Cascade recovery of slag waste heat was realized by using coal gasification reaction and the waste heat recovery ratio reached 73.61%. Meanwhile, two kinds of high value-added products of X-type zeolite and hydrotalcite-like compounds were synthesized simultaneously by using the beneficial components of blast furnace slag after fully recovering waste heat. Ultimately, the economic feasibility of the system was analyzed from two aspects of investment and profit. Under the reasonable economic assumptions, payback period of the project was 0.14 years, 10-year net present value was $ 326493.98 million, return on investment and internal rate of return were 737.74% and 312.82%, respectively. Through sensitivity analysis, the project could still be profitable in the production year under the condition that the sensitive factors of the system fluctuated within 40%. With great economic benefit and anti-risk ability, the novel full-chain blast furnace slag utilization system had potential in energy saving and emission reduction of iron and the iron and steel industry and the prospect of large-scale application.

Suggested Citation

  • Duan, Wenjun & Wu, Qinting & Li, Peishi & Cheng, Peiwen, 2022. "Techno-economic analysis of a novel full-chain blast furnace slag utilization system," Energy, Elsevier, vol. 242(C).
  • Handle: RePEc:eee:energy:v:242:y:2022:i:c:s0360544221032989
    DOI: 10.1016/j.energy.2021.123049
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544221032989
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.123049?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sun, Yongqi & Chen, Jingjing & Zhang, Zuotai, 2019. "Biomass gasification using the waste heat from high temperature slags in a mixture of CO2 and H2O," Energy, Elsevier, vol. 167(C), pages 688-697.
    2. Duan, Wenjun & Yu, Qingbo & Wang, Zhimei & Liu, Junxiang & Qin, Qin, 2018. "Life cycle and economic assessment of multi-stage blast furnace slag waste heat recovery system," Energy, Elsevier, vol. 142(C), pages 486-495.
    3. Thum-Thysen, Anna & Voigt, Peter & Bilbao-Osorio, Beñat & Maier, Christoph & Ognyanova, Diana, 2019. "Investment dynamics in Europe: Distinct drivers and barriers for investing in intangible versus tangible assets?," Structural Change and Economic Dynamics, Elsevier, vol. 51(C), pages 77-88.
    4. Sun, Wenqiang & Wang, Qiang & Zhou, Yue & Wu, Jianzhong, 2020. "Material and energy flows of the iron and steel industry: Status quo, challenges and perspectives," Applied Energy, Elsevier, vol. 268(C).
    5. Duan, Wenjun & Yu, Qingbo & Liu, Junxiang & Wu, Tianwei & Yang, Fan & Qin, Qin, 2016. "Experimental and kinetic study of steam gasification of low-rank coal in molten blast furnace slag," Energy, Elsevier, vol. 111(C), pages 859-868.
    6. Li, Guang & Chang, Yuxue & Liu, Tao & Yu, Zhongliang & Liu, Zheyu & Liu, Fan & Ma, Shuqi & Weng, Yujing & Zhang, Yulong, 2020. "Hydrogen element flow and economic analyses of a coal direct chemical looping hydrogen generation process," Energy, Elsevier, vol. 206(C).
    7. Chu, Guanrun & Li, Chun & Liu, Weizao & Zhang, Guoquan & Yue, Hairong & Liang, Bin & Wang, Ye & Luo, Dongmei, 2019. "Facile and cost-efficient indirect carbonation of blast furnace slag with multiple high value-added products through a completely wet process," Energy, Elsevier, vol. 166(C), pages 1314-1322.
    8. Luo, Siyi & Fu, Jie & Zhou, Yangmin & Yi, Chuijie, 2017. "The production of hydrogen-rich gas by catalytic pyrolysis of biomass using waste heat from blast-furnace slag," Renewable Energy, Elsevier, vol. 101(C), pages 1030-1036.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gai Zhang & Hui Cui & Xuecheng Hu & Anchao Qu & Hao Peng & Xiaotian Peng, 2024. "Research on NaCl-KCl High-Temperature Thermal Storage Composite Phase Change Material Based on Modified Blast Furnace Slag," Energies, MDPI, vol. 17(10), pages 1-20, May.
    2. Yao, Xin & Liu, Yang & Yu, Qingbo & Wang, Shuhuan, 2023. "Energy consumption of two-stage system of biomass pyrolysis and bio-oil reforming to recover waste heat from granulated BF slag," Energy, Elsevier, vol. 273(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Huining & Dong, Jianping & Wei, Chao & Cao, Caifang & Zhang, Zuotai, 2022. "Future trend of terminal energy conservation in steelmaking plant: Integration of molten slag heat recovery-combustible gas preparation from waste plastics and CO2 emission reduction," Energy, Elsevier, vol. 239(PE).
    2. Xie, Huaqing & Li, Rongquan & Yu, Zhenyu & Wang, Zhengyu & Yu, Qingbo & Qin, Qin, 2020. "Combined steam/dry reforming of bio-oil for H2/CO syngas production with blast furnace slag as heat carrier," Energy, Elsevier, vol. 200(C).
    3. Duan, Wenjun & Gao, Yunke & Yu, Qingbo & Wu, Tianwei & Wang, Zhimei, 2019. "Numerical simulation of coal gasification in molten slag: Gas-liquid interaction characteristic," Energy, Elsevier, vol. 183(C), pages 1233-1243.
    4. Yao, Xin & Liu, Yang & Yu, Qingbo & Wang, Shuhuan, 2023. "Energy consumption of two-stage system of biomass pyrolysis and bio-oil reforming to recover waste heat from granulated BF slag," Energy, Elsevier, vol. 273(C).
    5. Yang, Honghua & Ma, Linwei & Li, Zheng, 2023. "Tracing China's steel use from steel flows in the production system to steel footprints in the consumption system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 172(C).
    6. Li, Fenghai & Zhao, Chaoyue & Guo, Qianqian & Li, Yang & Fan, Hongli & Guo, Mingxi & Wu, Lishun & Huang, Jiejie & Fang, Yitian, 2020. "Exploration in ash-deposition (AD) behavior modification of low-rank coal by manure addition," Energy, Elsevier, vol. 208(C).
    7. Che, Gelegen & Zhang, Yanyan & Tang, Lixin & Zhao, Shengnan, 2023. "A deep reinforcement learning based multi-objective optimization for the scheduling of oxygen production system in integrated iron and steel plants," Applied Energy, Elsevier, vol. 345(C).
    8. Ma, Shuaiyin & Ding, Wei & Liu, Yang & Ren, Shan & Yang, Haidong, 2022. "Digital twin and big data-driven sustainable smart manufacturing based on information management systems for energy-intensive industries," Applied Energy, Elsevier, vol. 326(C).
    9. Jiang, Sheng-Long & Wang, Meihong & Bogle, I. David L., 2023. "Plant-wide byproduct gas distribution under uncertainty in iron and steel industry via quantile forecasting and robust optimization," Applied Energy, Elsevier, vol. 350(C).
    10. Li, Long & Liu, Weizao & Qin, Zhifeng & Zhang, Guoquan & Yue, Hairong & Liang, Bin & Tang, Shengwei & Luo, Dongmei, 2021. "Research on integrated CO2 absorption-mineralization and regeneration of absorbent process," Energy, Elsevier, vol. 222(C).
    11. Li, Fenghai & Liu, Quanrun & Li, Meng & Fang, Yitian, 2018. "Understanding fly-ash formation during fluidized-bed gasification of high-silicon-aluminum coal based on its characteristics," Energy, Elsevier, vol. 150(C), pages 142-152.
    12. Sun, Jingchao & Na, Hongming & Yan, Tianyi & Che, Zichang & Qiu, Ziyang & Yuan, Yuxing & Li, Yingnan & Du, Tao & Song, Yanli & Fang, Xin, 2022. "Cost-benefit assessment of manufacturing system using comprehensive value flow analysis," Applied Energy, Elsevier, vol. 310(C).
    13. Zhang, Liu & Zhang, Kaitian & Zheng, Zhong & Chai, Yi & Lian, Xiaoyuan & Zhang, Kai & Xu, Zhaojun & Chen, Sujun, 2023. "Two-stage distributionally robust integrated scheduling of oxygen distribution and steelmaking-continuous casting in steel enterprises," Applied Energy, Elsevier, vol. 351(C).
    14. Xiao, Dongliang & Lin, Zhenjia & Chen, Haoyong & Hua, Weiqi & Yan, Jinyue, 2024. "Windfall profit-aware stochastic scheduling strategy for industrial virtual power plant with integrated risk-seeking/averse preferences," Applied Energy, Elsevier, vol. 357(C).
    15. Jiang, Sheng-Long & Peng, Gongzhuang & Bogle, I. David L. & Zheng, Zhong, 2022. "Two-stage robust optimization approach for flexible oxygen distribution under uncertainty in integrated iron and steel plants," Applied Energy, Elsevier, vol. 306(PB).
    16. Huang, Jintao & Lyu, Sha & Han, He & Wang, Yanjiang & Sun, Haoyang & Su, Jingtao & Liu, Yidong & Min, Yonggang & Sun, Dazhi, 2022. "Enhanced looping biomass/vapour gasification utilizing waste heat from molten copper slags," Energy, Elsevier, vol. 252(C).
    17. Ren, Shan & Aldahri, Tahani & Liu, Weizao & Liang, Bin, 2021. "CO2 mineral sequestration by using blast furnace slag: From batch to continuous experiments," Energy, Elsevier, vol. 214(C).
    18. Wu, Junjun & Tan, Yu & Li, Peng & Wang, Hong & Zhu, Xun & Liao, Qiang, 2022. "Centrifugal-Granulation-Assisted thermal energy recovery towards low-carbon blast furnace slag treatment: State of the art and future challenges," Applied Energy, Elsevier, vol. 325(C).
    19. Liu, Shuhan & Sun, Wenqiang, 2023. "Attention mechanism-aided data- and knowledge-driven soft sensors for predicting blast furnace gas generation," Energy, Elsevier, vol. 262(PA).
    20. Wang, Xiaoling & Zhang, Tianyue & Nathwani, Jatin & Yang, Fangming & Shao, Qinglong, 2022. "Environmental regulation, technology innovation, and low carbon development: Revisiting the EKC Hypothesis, Porter Hypothesis, and Jevons’ Paradox in China's iron & steel industry," Technological Forecasting and Social Change, Elsevier, vol. 176(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:242:y:2022:i:c:s0360544221032989. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.