IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v222y2021ics0360544221002590.html
   My bibliography  Save this article

Research on integrated CO2 absorption-mineralization and regeneration of absorbent process

Author

Listed:
  • Li, Long
  • Liu, Weizao
  • Qin, Zhifeng
  • Zhang, Guoquan
  • Yue, Hairong
  • Liang, Bin
  • Tang, Shengwei
  • Luo, Dongmei

Abstract

The hot potassium-alkali method provides excellent performance for the absorption of CO2 from flue gas. However, the high energy consumption by absorbent regeneration poses a critical barrier to the widespread industrialization of the hot potassium-alkali method. In this study, an integrated CO2 absorption-mineralization and regeneration of absorbent (IAMR) process was proposed using K2CO3 solution as the absorbent and steel slag as the desorbent at normal temperature and pressure. This method greatly reduced the energy consumption and costs compared with the traditional thermal regeneration method. Under the optimal conditions, i.e. a K2CO3 concentration of 1.0 mol/L, reaction temperature of 60 °C and liquid-solid (K2CO3 solution-steel slag) ratio of 14 mL/g, the carbonation conversion of the steel slag reached 58.63% after 120min, corresponding to a CO2 storage capacity of 212 kg/t steel slag. The reaction process showed that the main component Ca2SiO4 in the steel slag had high solubility activity in K2CO3 solution which significantly enhanced the rate and efficiency of CO2 sequestration. Moreover, the performance stability of K2CO3 solution during CO2 absorption-desorption circulation was discussed. This research is of great significance for the simultaneous treatment of alkaline waste slags (steel slag, fly ash, etc.) and mitigation of greenhouse gases.

Suggested Citation

  • Li, Long & Liu, Weizao & Qin, Zhifeng & Zhang, Guoquan & Yue, Hairong & Liang, Bin & Tang, Shengwei & Luo, Dongmei, 2021. "Research on integrated CO2 absorption-mineralization and regeneration of absorbent process," Energy, Elsevier, vol. 222(C).
  • Handle: RePEc:eee:energy:v:222:y:2021:i:c:s0360544221002590
    DOI: 10.1016/j.energy.2021.120010
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544221002590
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.120010?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Harkin, Trent & Hoadley, Andrew & Hooper, Barry, 2012. "Using multi-objective optimisation in the design of CO2 capture systems for retrofit to coal power stations," Energy, Elsevier, vol. 41(1), pages 228-235.
    2. Dinca, Cristian & Slavu, Nela & Cormoş, Călin-Cristian & Badea, Adrian, 2018. "CO2 capture from syngas generated by a biomass gasification power plant with chemical absorption process," Energy, Elsevier, vol. 149(C), pages 925-936.
    3. Ji, Long & Yu, Hai & Li, Kangkang & Yu, Bing & Grigore, Mihaela & Yang, Qi & Wang, Xiaolong & Chen, Zuliang & Zeng, Ming & Zhao, Shuaifei, 2018. "Integrated absorption-mineralisation for low-energy CO2 capture and sequestration," Applied Energy, Elsevier, vol. 225(C), pages 356-366.
    4. Jin, He & Liu, Pei & Li, Zheng, 2018. "Energy-efficient process intensification for post-combustion CO2 capture: A modeling approach," Energy, Elsevier, vol. 158(C), pages 471-483.
    5. Irfan, Muhammad Faisal & Usman, Muhammad Rashid & Rashid, Ajaz, 2018. "A detailed statistical study of heterogeneous, homogeneous and nucleation models for dissolution of waste concrete sample for mineral carbonation," Energy, Elsevier, vol. 158(C), pages 580-591.
    6. Zhao, Jun & Fu, Jianxin & Deng, Shuai & Wang, Junyao & Xu, Yaofeng, 2020. "Decoupled thermal-driven absorption-based CO2 capture into heat engine plus carbon pump: A new understanding with the case study," Energy, Elsevier, vol. 210(C).
    7. Reddick, Christopher & Sorin, Mikhail & Rheault, Fernand, 2014. "Energy savings in CO2 (carbon dioxide) capture using ejectors for waste heat upgrading," Energy, Elsevier, vol. 65(C), pages 200-208.
    8. Soleimani, Reza & Abooali, Danial & Shoushtari, Navid Alavi, 2018. "Characterizing CO2 capture with aqueous solutions of LysK and the mixture of MAPA + DEEA using soft computing methods," Energy, Elsevier, vol. 164(C), pages 664-675.
    9. Chu, Guanrun & Li, Chun & Liu, Weizao & Zhang, Guoquan & Yue, Hairong & Liang, Bin & Wang, Ye & Luo, Dongmei, 2019. "Facile and cost-efficient indirect carbonation of blast furnace slag with multiple high value-added products through a completely wet process," Energy, Elsevier, vol. 166(C), pages 1314-1322.
    10. Clare Anderson & Minh Ho & Trent Harkin & Dianne Wiley & Barry Hooper, 2014. "Large scale economics of a precipitating potassium carbonate CO 2 capture process for black coal power generation," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 4(1), pages 8-19, February.
    11. Ren, Shan & Aldahri, Tahani & Liu, Weizao & Liang, Bin, 2021. "CO2 mineral sequestration by using blast furnace slag: From batch to continuous experiments," Energy, Elsevier, vol. 214(C).
    12. Oh, Hyun-Taek & Ju, Youngsan & Chung, Kyounghee & Lee, Chang-Ha, 2020. "Techno-economic analysis of advanced stripper configurations for post-combustion CO2 capture amine processes," Energy, Elsevier, vol. 206(C).
    13. Ferrara, G. & Lanzini, A. & Leone, P. & Ho, M.T. & Wiley, D.E., 2017. "Exergetic and exergoeconomic analysis of post-combustion CO2 capture using MEA-solvent chemical absorption," Energy, Elsevier, vol. 130(C), pages 113-128.
    14. Won, Yooseob & Kim, Jae-Young & Park, Young Cheol & Yi, Chang-Keun & Nam, Hyungseok & Woo, Je-Min & Jin, Gyoung-Tae & Park, Jaehyeon & Lee, Seung-Yong & Jo, Sung-Ho, 2020. "Post-combustion CO2 capture process in a circulated fluidized bed reactor using 200 kg potassium-based sorbent: The optimization of regeneration condition," Energy, Elsevier, vol. 208(C).
    15. Cristea, Vasile-Mircea & Burca, Madalina Ioana & Ilea, Flavia Maria & Cormos, Ana-Maria, 2020. "Efficient decentralized control of the post combustion CO2 capture plant for flexible operation against influent flue gas disturbances," Energy, Elsevier, vol. 205(C).
    16. Zhang, Zhien & Borhani, Tohid N. & Olabi, Abdul G., 2020. "Status and perspective of CO2 absorption process," Energy, Elsevier, vol. 205(C).
    17. Wu, Ying & Chen, Xiaoping & Ma, Jiliang & Wu, Ye & Liu, Daoyin & Xie, Weiyi, 2020. "System integration optimization for coal-fired power plant with CO2 capture by Na2CO3 dry sorbents," Energy, Elsevier, vol. 211(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wilkes, Mathew Dennis & Mukherjee, Sanjay & Brown, Solomon, 2021. "Transient CO2 capture for open-cycle gas turbines in future energy systems," Energy, Elsevier, vol. 216(C).
    2. Julio, Alisson Aparecido Vitoriano & Castro-Amoedo, Rafael & Maréchal, François & González, Aldemar Martínez & Escobar Palacio, José Carlos, 2023. "Exergy and economic analysis of the trade-off for design of post-combustion CO2 capture plant by chemical absorption with MEA," Energy, Elsevier, vol. 280(C).
    3. Ren, Shan & Aldahri, Tahani & Liu, Weizao & Liang, Bin, 2021. "CO2 mineral sequestration by using blast furnace slag: From batch to continuous experiments," Energy, Elsevier, vol. 214(C).
    4. Haider Sultan & Umair Hassan Bhatti & Hafiz Ali Muhammad & Sung Chan Nam & Il Hyun Baek, 2021. "Modification of postcombustion CO2 capture process: A techno‐economic analysis," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 11(1), pages 165-182, February.
    5. Jordán, Pérez Sánchez & Javier Eduardo, Aguillón Martínez & Zdzislaw, Mazur Czerwiec & Alan Martín, Zavala Guzmán & Liborio, Huante Pérez & Jesús Antonio, Flores Zamudio & Mario Román, Díaz Guillén, 2019. "Techno-economic analysis of solar-assisted post-combustion carbon capture to a pilot cogeneration system in Mexico," Energy, Elsevier, vol. 167(C), pages 1107-1119.
    6. Arshad, Nahyan & Alhajaj, Ahmed, 2023. "Process synthesis for amine-based CO2 capture from combined cycle gas turbine power plant," Energy, Elsevier, vol. 274(C).
    7. Yoro, Kelvin O. & Daramola, Michael O. & Sekoai, Patrick T. & Armah, Edward K. & Wilson, Uwemedimo N., 2021. "Advances and emerging techniques for energy recovery during absorptive CO2 capture: A review of process and non-process integration-based strategies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
    8. Shamsi, Mohammad & Naeiji, Esfandiyar & Rooeentan, Saeed & Shahandashty, Behnam Fayyaz & Namegoshayfard, Parham & Bonyadi, Mohammad, 2023. "Proposal and investigation of CO2 capture from fired heater flue gases to increase methanol production: A case study," Energy, Elsevier, vol. 274(C).
    9. Zhao, Zhijun & Xing, Xiao & Tang, Zhigang & Zheng, Yong & Fei, Weiyang & Liang, Xiangfeng & Ataeivarjovi, E. & Guo, Dong, 2018. "Experiment and simulation study of CO2 solubility in dimethyl carbonate, 1-octyl-3-methylimidazolium tetrafluoroborate and their mixtures," Energy, Elsevier, vol. 143(C), pages 35-42.
    10. Zhang, Weifeng & Xu, Yuanlong & Wang, Qiuhua, 2022. "Coupled CO2 absorption and mineralization with low-concentration monoethanolamine," Energy, Elsevier, vol. 241(C).
    11. Muhammad Asif & Muhammad Suleman & Ihtishamul Haq & Syed Asad Jamal, 2018. "Post‐combustion CO2 capture with chemical absorption and hybrid system: current status and challenges," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 8(6), pages 998-1031, December.
    12. Khalilpour, Rajab, 2014. "Multi-level investment planning and scheduling under electricity and carbon market dynamics: Retrofit of a power plant with PCC (post-combustion carbon capture) processes," Energy, Elsevier, vol. 64(C), pages 172-186.
    13. Olabi, A.G. & Wilberforce, Tabbi & Abdelkareem, Mohammad Ali, 2021. "Fuel cell application in the automotive industry and future perspective," Energy, Elsevier, vol. 214(C).
    14. Ilea, Flavia-Maria & Cormos, Ana-Maria & Cristea, Vasile-Mircea & Cormos, Calin-Cristian, 2023. "Enhancing the post-combustion carbon dioxide carbon capture plant performance by setpoints optimization of the decentralized multi-loop and cascade control system," Energy, Elsevier, vol. 275(C).
    15. Esfandiyar Naeiji & Alireza Noorpoor & Hossein Ghanavati, 2022. "Energy, Exergy, and Economic Analysis of Cryogenic Distillation and Chemical Scrubbing for Biogas Upgrading and Hydrogen Production," Sustainability, MDPI, vol. 14(6), pages 1-23, March.
    16. Aubaid Ullah & Nur Awanis Hashim & Mohamad Fairus Rabuni & Mohd Usman Mohd Junaidi, 2023. "A Review on Methanol as a Clean Energy Carrier: Roles of Zeolite in Improving Production Efficiency," Energies, MDPI, vol. 16(3), pages 1-35, February.
    17. Galusnyak, Stefan Cristian & Petrescu, Letitia & Chisalita, Dora Andreea & Cormos, Calin-Cristian, 2022. "Life cycle assessment of methanol production and conversion into various chemical intermediates and products," Energy, Elsevier, vol. 259(C).
    18. Alammar, Ahmed A. & Rezk, Ahmed & Alaswad, Abed & Fernando, Julia & Olabi, A.G. & Decker, Stephanie & Ruhumuliza, Joseph & Gasana, Quénan, 2022. "The technical, economic, and environmental feasibility of a bioheat-driven adsorption cooling system for food cold storing: A case study of Rwanda," Energy, Elsevier, vol. 258(C).
    19. Kim, Seonggon & Ko, Yunmo & Lee, Geun Jeong & Lee, Jae Won & Xu, Ronghuan & Ahn, Hyungseop & Kang, Yong Tae, 2023. "Sustainable energy harvesting from post-combustion CO2 capture using amine-functionalized solvents," Energy, Elsevier, vol. 267(C).
    20. Baskoro, Firly Rachmaditya & Takahashi, Katsuhiko & Morikawa, Katsumi & Nagasawa, Keisuke, 2022. "Multi-objective optimization on total cost and carbon dioxide emission of coal supply for coal-fired power plants in Indonesia," Socio-Economic Planning Sciences, Elsevier, vol. 81(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:222:y:2021:i:c:s0360544221002590. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.