IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v210y2020ics0360544220316649.html
   My bibliography  Save this article

Decoupled thermal-driven absorption-based CO2 capture into heat engine plus carbon pump: A new understanding with the case study

Author

Listed:
  • Zhao, Jun
  • Fu, Jianxin
  • Deng, Shuai
  • Wang, Junyao
  • Xu, Yaofeng

Abstract

Absorption-based CO2 capture has been widely recognized as a mature technology for CO2 separation from industrial flue gas. However, the solvent regeneration process consumes a significant amount of energy. It is urgent to gain a deep understanding from a thermodynamic perspective about the underlying mechanism in the conversion of energy during the carbon separation process. The present study aims at developing a new decoupling model to physically visualize the “thermal energy-to-Gibbs free energy change” process in absorption-based CO2 capture technology. Firstly, an energy conversion path through the heat to work and finally to generalized chemical work is demonstrated. Secondly, a “heat engine-carbon pump” decoupling model is established with a related expression of energy conversion efficiency of ideal absorption-based CO2 capture. Lastly, the energetic performances of typical pilot-scale absorption CO2 capture systems are evaluated through the second law efficiency. According to the results, the ideal cycle coefficient of performance can reach 0.898 at baseline condition of the case study, with a heat engine efficiency of 24.2% and carbon pump coefficient of 3.716. Generally, the second law efficiency of an actual system is less than 20%, while the Ammonia method has been adopted as the system with the highest efficiency of 27.39%.

Suggested Citation

  • Zhao, Jun & Fu, Jianxin & Deng, Shuai & Wang, Junyao & Xu, Yaofeng, 2020. "Decoupled thermal-driven absorption-based CO2 capture into heat engine plus carbon pump: A new understanding with the case study," Energy, Elsevier, vol. 210(C).
  • Handle: RePEc:eee:energy:v:210:y:2020:i:c:s0360544220316649
    DOI: 10.1016/j.energy.2020.118556
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544220316649
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2020.118556?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lindqvist, Karl & Jordal, Kristin & Haugen, Geir & Hoff, Karl Anders & Anantharaman, Rahul, 2014. "Integration aspects of reactive absorption for post-combustion CO2 capture from NGCC (natural gas combined cycle) power plants," Energy, Elsevier, vol. 78(C), pages 758-767.
    2. Zhao, Ruikai & Deng, Shuai & Liu, Yinan & Zhao, Qing & He, Junnan & Zhao, Li, 2017. "Carbon pump: Fundamental theory and applications," Energy, Elsevier, vol. 119(C), pages 1131-1143.
    3. Wang, Xianfeng & Akhmedov, Novruz G. & Hopkinson, David & Hoffman, James & Duan, Yuhua & Egbebi, Adefemi & Resnik, Kevin & Li, Bingyun, 2016. "Phase change amino acid salt separates into CO2-rich and CO2-lean phases upon interacting with CO2," Applied Energy, Elsevier, vol. 161(C), pages 41-47.
    4. Hwang, Junhyeok & Kim, Jeongnam & Lee, Hee Won & Na, Jonggeol & Ahn, Byoung Sung & Lee, Sang Deuk & Kim, Hoon Sik & Lee, Hyunjoo & Lee, Ung, 2019. "An experimental based optimization of a novel water lean amine solvent for post combustion CO2 capture process," Applied Energy, Elsevier, vol. 248(C), pages 174-184.
    5. Guo, Hui & Li, Chenxu & Shi, Xiaoqin & Li, Hui & Shen, Shufeng, 2019. "Nonaqueous amine-based absorbents for energy efficient CO2 capture," Applied Energy, Elsevier, vol. 239(C), pages 725-734.
    6. Paul H.M. Feron & Ashleigh Cousins & Shiwang Gao & Lianbo Liu & Jinyi Wang & Shiqing Wang & Hongwei Niu & Hai Yu & Kangkang Li & Aaron Cottrell, 2017. "Experimental performance assessment of a mono‐ethanolamine‐based post‐combustion CO 2 ‐capture at a coal‐fired power station in China," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 7(3), pages 486-499, June.
    7. Yaofeng Xu & Shuai Deng & Li Zhao & Xiangzhou Yuan & Jianxin Fu & Shuangjun Li & Yawen Liang & Junyao Wang & Jun Zhao, 2019. "Application of the Thermodynamic Cycle to Assess the Energy Efficiency of Amine-Based Absorption of Carbon Capture," Energies, MDPI, vol. 12(13), pages 1-20, June.
    8. Wang, Junyao & Sun, Taiwei & Zhao, Jun & Deng, Shuai & Li, Kaixiang & Xu, Yaofeng & Fu, Jianxin, 2019. "Thermodynamic considerations on MEA absorption: Whether thermodynamic cycle could be used as a tool for energy efficiency analysis," Energy, Elsevier, vol. 168(C), pages 380-392.
    9. Zhang, Rui & Zhang, Xiaowen & Yang, Qi & Yu, Hai & Liang, Zhiwu & Luo, Xiao, 2017. "Analysis of the reduction of energy cost by using MEA-MDEA-PZ solvent for post-combustion carbon dioxide capture (PCC)," Applied Energy, Elsevier, vol. 205(C), pages 1002-1011.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Long & Liu, Weizao & Qin, Zhifeng & Zhang, Guoquan & Yue, Hairong & Liang, Bin & Tang, Shengwei & Luo, Dongmei, 2021. "Research on integrated CO2 absorption-mineralization and regeneration of absorbent process," Energy, Elsevier, vol. 222(C).
    2. Zhang, Z.X. & Xu, H.J., 2023. "Thermodynamic modeling on multi-stage vacuum-pressure swing adsorption (VPSA) for direct air carbon capture with extreme dilute carbon dioxide," Energy, Elsevier, vol. 276(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yaofeng Xu & Shuai Deng & Li Zhao & Xiangzhou Yuan & Jianxin Fu & Shuangjun Li & Yawen Liang & Junyao Wang & Jun Zhao, 2019. "Application of the Thermodynamic Cycle to Assess the Energy Efficiency of Amine-Based Absorption of Carbon Capture," Energies, MDPI, vol. 12(13), pages 1-20, June.
    2. Alivand, Masood S. & Mazaheri, Omid & Wu, Yue & Stevens, Geoffrey W. & Scholes, Colin A. & Mumford, Kathryn A., 2019. "Development of aqueous-based phase change amino acid solvents for energy-efficient CO2 capture: The role of antisolvent," Applied Energy, Elsevier, vol. 256(C).
    3. Li, Shuangjun & Deng, Shuai & Zhao, Li & Zhao, Ruikai & Yuan, Xiangzhou, 2021. "Thermodynamic carbon pump 2.0: Elucidating energy efficiency through the thermodynamic cycle," Energy, Elsevier, vol. 215(PB).
    4. Gao, Hongxia & Huang, Yufei & Zhang, Xiaowen & Bairq, Zain Ali Saleh & Huang, Yangqiang & Tontiwachwuthikul, Paitoon & Liang, Zhiwu, 2020. "Catalytic performance and mechanism of SO42−/ZrO2/SBA-15 catalyst for CO2 desorption in CO2-loaded monoethanolamine solution," Applied Energy, Elsevier, vol. 259(C).
    5. Zhao, Ruikai & Liu, Longcheng & Zhao, Li & Deng, Shuai & Li, Shuangjun & Zhang, Yue, 2019. "A comprehensive performance evaluation of temperature swing adsorption for post-combustion carbon dioxide capture," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    6. Liu, Yinan & Deng, Shuai & Zhao, Ruikai & He, Junnan & Zhao, Li, 2017. "Energy-saving pathway exploration of CCS integrated with solar energy: A review of innovative concepts," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 652-669.
    7. Liu, W. & Lin, Y.C. & Jiang, L. & Ji, Y. & Yong, J.Y. & Zhang, X.J., 2022. "Thermodynamic exploration of two-stage vacuum-pressure swing adsorption for carbon dioxide capture," Energy, Elsevier, vol. 241(C).
    8. Fu, Kun & Zheng, Mingzhen & Wang, Haijie & Fu, Dong, 2022. "Effect of water content on the characteristics of CO2 capture processes in absorbents of 2-ethylhexan-1-amine + diglyme," Energy, Elsevier, vol. 244(PA).
    9. Yoro, Kelvin O. & Daramola, Michael O. & Sekoai, Patrick T. & Armah, Edward K. & Wilson, Uwemedimo N., 2021. "Advances and emerging techniques for energy recovery during absorptive CO2 capture: A review of process and non-process integration-based strategies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
    10. Kim, Jeongnam & Na, Jonggeol & Kim, Kyeongsu & Bak, Ji Hyun & Lee, Hyunjoo & Lee, Ung, 2021. "Learning the properties of a water-lean amine solvent from carbon capture pilot experiments," Applied Energy, Elsevier, vol. 283(C).
    11. Shunji Kang & Zhi Shen & Xizhou Shen & Liuya Fang & Li Xiang & Wenze Yang, 2021. "Experimental investigation on CO2 desorption kinetics from MDEA + PZ and comparison with MDEA/MDEA + DEA aqueous solutions with thermo‐gravimetric analysis method," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 11(5), pages 974-987, October.
    12. Kazemi, Abolghasem & Moreno, Jovita & Iribarren, Diego, 2023. "Economic optimization and comparative environmental assessment of natural gas combined cycle power plants with CO2 capture," Energy, Elsevier, vol. 277(C).
    13. Zhang, Weifeng & Xu, Yuanlong & Wang, Qiuhua, 2022. "Coupled CO2 absorption and mineralization with low-concentration monoethanolamine," Energy, Elsevier, vol. 241(C).
    14. Zhang, Xiaowen & Zhang, Rui & Liu, Helei & Gao, Hongxia & Liang, Zhiwu, 2018. "Evaluating CO2 desorption performance in CO2-loaded aqueous tri-solvent blend amines with and without solid acid catalysts," Applied Energy, Elsevier, vol. 218(C), pages 417-429.
    15. Zhang, Rui & Yang, Qi & Yu, Bing & Yu, Hai & Liang, Zhiwu, 2018. "Toward to efficient CO2 capture solvent design by analyzing the effect of substituent type connected to N-atom," Energy, Elsevier, vol. 144(C), pages 1064-1072.
    16. Carapellucci, Roberto & Giordano, Lorena & Vaccarelli, Maura, 2017. "Application of an amine-based CO2 capture system in retrofitting combined gas-steam power plants," Energy, Elsevier, vol. 118(C), pages 808-826.
    17. Wang, Rujie & Zhao, Huajun & Qi, Cairao & Yang, Xiaotong & Zhang, Shihan & Li, Ming & Wang, Lidong, 2022. "Novel tertiary amine-based biphasic solvent for energy-efficient CO2 capture with low corrosivity," Energy, Elsevier, vol. 260(C).
    18. Ronald Ssebadduka & Kyuro Sasaki & Yuichi Sugai, 2020. "An Analysis of the Possible Financial Savings of a Carbon Capture Process through Carbon Dioxide Absorption and Geological Dumping," International Journal of Energy Economics and Policy, Econjournals, vol. 10(4), pages 266-270.
    19. Bihong, Lv & Kexuan, Yang & Xiaobin, Zhou & Zuoming, Zhou & Guohua, Jing, 2020. "2-Amino-2-methyl-1-propanol based non-aqueous absorbent for energy-efficient and non-corrosive carbon dioxide capture," Applied Energy, Elsevier, vol. 264(C).
    20. Liu, Fei & Fang, Mengxiang & Dong, Wenfeng & Wang, Tao & Xia, Zhixiang & Wang, Qinhui & Luo, Zhongyang, 2019. "Carbon dioxide absorption in aqueous alkanolamine blends for biphasic solvents screening and evaluation," Applied Energy, Elsevier, vol. 233, pages 468-477.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:210:y:2020:i:c:s0360544220316649. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.