IDEAS home Printed from https://ideas.repec.org/a/eee/soceps/v81y2022ics0038012121001774.html
   My bibliography  Save this article

Multi-objective optimization on total cost and carbon dioxide emission of coal supply for coal-fired power plants in Indonesia

Author

Listed:
  • Baskoro, Firly Rachmaditya
  • Takahashi, Katsuhiko
  • Morikawa, Katsumi
  • Nagasawa, Keisuke

Abstract

Indonesian coal is distributed in several islands, such as Sumatra, Kalimantan, Sulawesi, and Papua. Most of them are classified as low and medium rank coal, which is very suitable for coal-fired power plants. In the future, domestic coal demand will increase, driven by the government plans to increase the electricity generation capacity and primary energy demand. In the existing scheme, only a coal mining company whose coal quality is an exact match with the coal-fired power plant specification can be selected as a supplier, without considering a blending mechanism. This condition may have some issues for long-term supply, as the coal will be exhausted in time and tends to come at a high cost. To improve the decision making for securing the long-term coal demand for electricity generation, optimization with coal blending should be considered. This research includes the consideration of the coal quality parameters; the power plant's requirement criteria; the location of the coal-blending facility; and ship types. A multi-objective optimization using mixed-integer linear programming, consisting of linear inequalities in binary and continuous variables as the constraints, is introduced to find the optimal solution, with cost and carbon dioxide emission as the objective functions. Several scenarios, which are the baseline condition, chartered ship, and environmental consciousness, will be analyzed. The results obtained by using the epsilon-constraint method show the benefits of the proposed schemes and scenarios, which are able to secure long-term demand with a more flexible solution, and reduce the total cost and carbon dioxide emission. Furthermore, considering the parameter setting and modeling, the optimization can be considered as applicable for solving similar problems related to the transportation selection and supply chain for similar commodities in the greater area.

Suggested Citation

  • Baskoro, Firly Rachmaditya & Takahashi, Katsuhiko & Morikawa, Katsumi & Nagasawa, Keisuke, 2022. "Multi-objective optimization on total cost and carbon dioxide emission of coal supply for coal-fired power plants in Indonesia," Socio-Economic Planning Sciences, Elsevier, vol. 81(C).
  • Handle: RePEc:eee:soceps:v:81:y:2022:i:c:s0038012121001774
    DOI: 10.1016/j.seps.2021.101185
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0038012121001774
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.seps.2021.101185?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ning, Yadong & Chen, Kunkun & Zhang, Boya & Ding, Tao & Guo, Fei & Zhang, Ming, 2020. "Energy conservation and emission reduction path selection in China: A simulation based on Bi-Level multi-objective optimization model," Energy Policy, Elsevier, vol. 137(C).
    2. Liu, Chiun-Ming & Sherali, Hanif D., 2000. "A coal shipping and blending problem for an electric utility company," Omega, Elsevier, vol. 28(4), pages 433-444, August.
    3. Akgün, İbrahim & Özkil, Altan & Gören, Selçuk, 2020. "A multimodal, multicommodity, and multiperiod planning problem for coal distribution to poor families," Socio-Economic Planning Sciences, Elsevier, vol. 72(C).
    4. Xie, Zhijun & Kuby, Michael, 1997. "Supply-side--demand-side optimization and cost--environment tradeoffs for China's coal and electricity system," Energy Policy, Elsevier, vol. 25(3), pages 313-326, February.
    5. Yu, Shiwei & Zheng, Shuhong & Zhang, Xuejiao & Gong, Chengzhu & Cheng, Jinhua, 2018. "Realizing China's goals on energy saving and pollution reduction: Industrial structure multi-objective optimization approach," Energy Policy, Elsevier, vol. 122(C), pages 300-312.
    6. Wang, Wenya & Li, Zhenfu & Cheng, Xin, 2019. "Evolution of the global coal trade network: A complex network analysis," Resources Policy, Elsevier, vol. 62(C), pages 496-506.
    7. Nawaz, Zanib & Ali, Usman, 2020. "Techno-economic evaluation of different operating scenarios for indigenous and imported coal blends and biomass co-firing on supercritical coal fired power plant performance," Energy, Elsevier, vol. 212(C).
    8. Li, Chong-Mao & Nie, Rui, 2017. "An evaluating system for scientific mining of China's coal resources," Resources Policy, Elsevier, vol. 53(C), pages 317-327.
    9. Arigoni, Ashley & Newman, Alexandra & Turner, Cameron & Kaptur, Casey, 2017. "Optimizing global thermal coal shipments," Omega, Elsevier, vol. 72(C), pages 118-127.
    10. Li, Li & Lei, Yalin & Wu, Sanmang & He, Chunyan & Yan, Dan, 2018. "Study on the coordinated development of economy, environment and resource in coal-based areas in Shanxi Province in China: Based on the multi-objective optimization model," Resources Policy, Elsevier, vol. 55(C), pages 80-86.
    11. Djeumou Fomeni, Franklin, 2018. "A multi-objective optimization approach for the blending problem in the tea industry," International Journal of Production Economics, Elsevier, vol. 205(C), pages 179-192.
    12. He, Yong & Liao, Nuo & Lin, Kunrong, 2021. "Can China's industrial sector achieve energy conservation and emission reduction goals dominated by energy efficiency enhancement? A multi-objective optimization approach," Energy Policy, Elsevier, vol. 149(C).
    13. Fan, Jing-Li & Xu, Mao & Li, Fengyu & Yang, Lin & Zhang, Xian, 2018. "Carbon capture and storage (CCS) retrofit potential of coal-fired power plants in China: The technology lock-in and cost optimization perspective," Applied Energy, Elsevier, vol. 229(C), pages 326-334.
    14. Dimitri J. Papageorgiou & Alejandro Toriello & George L. Nemhauser & Martin W. P. Savelsbergh, 2012. "Fixed-Charge Transportation with Product Blending," Transportation Science, INFORMS, vol. 46(2), pages 281-295, May.
    15. Shih, Li-Hsing, 1997. "Planning of fuel coal imports using a mixed integer programming method," International Journal of Production Economics, Elsevier, vol. 51(3), pages 243-249, September.
    16. Guerras, Lidia S. & Martín, Mariano, 2019. "Optimal gas treatment and coal blending for reduced emissions in power plants: A case study in Northwest Spain," Energy, Elsevier, vol. 169(C), pages 739-749.
    17. Lai, Jeng-Wen & Chen, Chia-Yon, 1996. "A cost minimization model for coal import strategy," Energy Policy, Elsevier, vol. 24(12), pages 1111-1117, December.
    18. Wu, Ying & Chen, Xiaoping & Ma, Jiliang & Wu, Ye & Liu, Daoyin & Xie, Weiyi, 2020. "System integration optimization for coal-fired power plant with CO2 capture by Na2CO3 dry sorbents," Energy, Elsevier, vol. 211(C).
    19. Xu, Jiuping & Dai, Jingqi & Xie, Heping & Lv, Chengwei, 2017. "Coal utilization eco-paradigm towards an integrated energy system," Energy Policy, Elsevier, vol. 109(C), pages 370-381.
    20. Gu, Fu & Wang, Jiqiang & Guo, Jianfeng & Fan, Ying, 2020. "How the supply and demand of steam coal affect the investment in clean energy industry? Evidence from China," Resources Policy, Elsevier, vol. 69(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Carmona-Benítez, Rafael Bernardo & Cruz, Héctor, 2023. "A multiproduct gasoline supply chain with product standardization and postponement strategy," Socio-Economic Planning Sciences, Elsevier, vol. 88(C).
    2. Hariana, & Putra, Hanafi Prida & Prabowo, & Hilmawan, Edi & Darmawan, Arif & Mochida, Keiichi & Aziz, Muhammad, 2023. "Theoretical and experimental investigation of ash-related problems during coal co-firing with different types of biomass in a pulverized coal-fired boiler," Energy, Elsevier, vol. 269(C).
    3. Ziwei Yan & Chunying Cui, 2022. "How Natural Gas Infrastructure Affects Carbon Emission Indicators in Guangdong Province?," Sustainability, MDPI, vol. 14(13), pages 1-26, July.
    4. Wang, Yihan & Zhang, Lanxin & Wen, Zongguo & Chen, Chen & Cao, Xin & Doh Dinga, Christian, 2023. "Optimization of the sustainable production pathways under multiple industries and objectives: A study of China's three energy- and emission-intensive industries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 182(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Arigoni, Ashley & Newman, Alexandra & Turner, Cameron & Kaptur, Casey, 2017. "Optimizing global thermal coal shipments," Omega, Elsevier, vol. 72(C), pages 118-127.
    2. Akgün, İbrahim & Özkil, Altan & Gören, Selçuk, 2020. "A multimodal, multicommodity, and multiperiod planning problem for coal distribution to poor families," Socio-Economic Planning Sciences, Elsevier, vol. 72(C).
    3. Chen, Sai & Song, Yan & Zhang, Ming, 2021. "Study on the sustainability evaluation and development path selection of China’s coal base from the perspective of spatial field," Energy, Elsevier, vol. 215(PA).
    4. Jiang, Meihui & An, Haizhong & Gao, Xiangyun & Liu, Donghui & Jia, Nanfei & Xi, Xian, 2020. "Consumption-based multi-objective optimization model for minimizing energy consumption: A case study of China," Energy, Elsevier, vol. 208(C).
    5. He, Yong & Liao, Nuo & Lin, Kunrong, 2021. "Can China's industrial sector achieve energy conservation and emission reduction goals dominated by energy efficiency enhancement? A multi-objective optimization approach," Energy Policy, Elsevier, vol. 149(C).
    6. Prasad, Sanjeev K. & Mangaraj, B.K., 2022. "A multi-objective competitive-design framework for fuel procurement planning in coal-fired power plants for sustainable operations," Energy Economics, Elsevier, vol. 108(C).
    7. Gaurav Singh & Rodolfo García-Flores & Andreas Ernst & Palitha Welgama & Meimei Zhang & Kerry Munday, 2014. "Medium-Term Rail Scheduling for an Iron Ore Mining Company," Interfaces, INFORMS, vol. 44(2), pages 222-240, April.
    8. Bilgen, Bilge & Ozkarahan, Irem, 2007. "A mixed-integer linear programming model for bulk grain blending and shipping," International Journal of Production Economics, Elsevier, vol. 107(2), pages 555-571, June.
    9. Marielle Christiansen & Kjetil Fagerholt & David Ronen, 2004. "Ship Routing and Scheduling: Status and Perspectives," Transportation Science, INFORMS, vol. 38(1), pages 1-18, February.
    10. Djeumou Fomeni, Franklin, 2018. "A multi-objective optimization approach for the blending problem in the tea industry," International Journal of Production Economics, Elsevier, vol. 205(C), pages 179-192.
    11. Chen, Yuhong & Lyu, Yanfeng & Yang, Xiangdong & Zhang, Xiaohong & Pan, Hengyu & Wu, Jun & Lei, Yongjia & Zhang, Yanzong & Wang, Guiyin & Xu, Min & Luo, Hongbin, 2022. "Performance comparison of urea production using one set of integrated indicators considering energy use, economic cost and emissions’ impacts: A case from China," Energy, Elsevier, vol. 254(PC).
    12. Aliaga Lordemann, Javier & Herrerra Jiménez, Alejandro, 2014. "Energy-Mix Scenarios for Bolivia," Documentos de trabajo 8/2014, Instituto de Investigaciones Socio-Económicas (IISEC), Universidad Católica Boliviana.
    13. Yang, Lin & Lv, Haodong & Jiang, Dalin & Fan, Jingli & Zhang, Xian & He, Weijun & Zhou, Jinsheng & Wu, Wenjing, 2020. "Whether CCS technologies will exacerbate the water crisis in China? —A full life-cycle analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    14. Wang, Xianzhu & Huang, He & Hong, Jingke & Ni, Danfei & He, Rongxiao, 2020. "A spatiotemporal investigation of energy-driven factors in China: A region-based structural decomposition analysis," Energy, Elsevier, vol. 207(C).
    15. Lin, Boqiang & Zhu, Junpeng, 2019. "Impact of energy saving and emission reduction policy on urban sustainable development: Empirical evidence from China," Applied Energy, Elsevier, vol. 239(C), pages 12-22.
    16. Cai, Xiaomei & Liu, Chan & Zheng, Shuxian & Hu, Han & Tan, Zhanglu, 2023. "Analysis on the evolution characteristics of barite international trade pattern based on complex networks," Resources Policy, Elsevier, vol. 83(C).
    17. Anna Danandeh & Bo Zeng & Brent Caldwell & Brian Buckley, 2016. "A Decision Support System for Fuel Supply Chain Design at Tampa Electric Company," Interfaces, INFORMS, vol. 46(6), pages 503-521, December.
    18. Guorong Chen & Shiyi Fang & Qibo Chen & Yun Zhang, 2023. "Risk Spillovers and Network Connectedness between Clean Energy Stocks, Green Bonds, and Other Financial Assets: Evidence from China," Energies, MDPI, vol. 16(20), pages 1-21, October.
    19. Li, Long & Liu, Weizao & Qin, Zhifeng & Zhang, Guoquan & Yue, Hairong & Liang, Bin & Tang, Shengwei & Luo, Dongmei, 2021. "Research on integrated CO2 absorption-mineralization and regeneration of absorbent process," Energy, Elsevier, vol. 222(C).
    20. Zhou, Xiaoxiao & Pan, Zixuan & Shahbaz, Muhammad & Song, Malin, 2020. "Directed technological progress driven by diversified industrial structural change," Structural Change and Economic Dynamics, Elsevier, vol. 54(C), pages 112-129.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:soceps:v:81:y:2022:i:c:s0038012121001774. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/seps .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.