IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v142y2018icp486-495.html
   My bibliography  Save this article

Life cycle and economic assessment of multi-stage blast furnace slag waste heat recovery system

Author

Listed:
  • Duan, Wenjun
  • Yu, Qingbo
  • Wang, Zhimei
  • Liu, Junxiang
  • Qin, Qin

Abstract

In order to utilize the waste heat of blast furnace slag more effectively, the multi-stage slag waste heat recovery system was proposed. This study employed the life cycle assessment to evaluate the environmental performance of the proposed system. Meanwhile, the economic feasibility of the system was analyzed in terms of capital cost and return analysis. Based on the current status of the environment, CO2 tax was also referred in the net explicit profit and net implicit profit calculation of the system. The energy consumption and resource consumption of the system were 268.84 kg coal-eq/tslag and 1213.60 kg/tslag, respectively. The main environmental impact came from the slag production process. Under the consideration of CO2 tax, the net explicit profit and net implicit profit of the proposed method were 13.40 $/tslag and 135.14 $/tslag when the CO2 tax were 33.00 $ per ton. In this process, the evaluations of the proposed system were done in comparison with the conventional water quenching method-open circuit process and latest dry slag granulation method by the main energy, environmental and economic indicators. As results suggested, the multi-stage slag waste heat recovery system had a good application potential in the aspect of energy conservation and emission reduction for iron and steel industry.

Suggested Citation

  • Duan, Wenjun & Yu, Qingbo & Wang, Zhimei & Liu, Junxiang & Qin, Qin, 2018. "Life cycle and economic assessment of multi-stage blast furnace slag waste heat recovery system," Energy, Elsevier, vol. 142(C), pages 486-495.
  • Handle: RePEc:eee:energy:v:142:y:2018:i:c:p:486-495
    DOI: 10.1016/j.energy.2017.10.048
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544217317176
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2017.10.048?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Luo, Siyi & Yi, Chuijie & Zhou, Yangmin, 2013. "Bio-oil production by pyrolysis of biomass using hot blast furnace slag," Renewable Energy, Elsevier, vol. 50(C), pages 373-377.
    2. Li, Yemao & Xia, Jianjun & Fang, Hao & Su, Yingbo & Jiang, Yi, 2016. "Case study on industrial surplus heat of steel plants for district heating in Northern China," Energy, Elsevier, vol. 102(C), pages 397-405.
    3. Sun, Yongqi & Seetharaman, Seshadri & Liu, Qianyi & Zhang, Zuotai & Liu, Lili & Wang, Xidong, 2016. "Integrated biomass gasification using the waste heat from hot slags: Control of syngas and polluting gas releases," Energy, Elsevier, vol. 114(C), pages 165-176.
    4. Sun, Yongqi & Shen, Hongwei & Wang, Hao & Wang, Xidong & Zhang, Zuotai, 2014. "Experimental investigation and modeling of cooling processes of high temperature slags," Energy, Elsevier, vol. 76(C), pages 761-767.
    5. Liu, Chao & He, Chao & Gao, Hong & Xie, Hui & Li, Yourong & Wu, Shuangying & Xu, Jinliang, 2013. "The environmental impact of organic Rankine cycle for waste heat recovery through life-cycle assessment," Energy, Elsevier, vol. 56(C), pages 144-154.
    6. Duan, Wenjun & Yu, Qingbo & Xie, Huaqing & Qin, Qin, 2017. "Pyrolysis of coal by solid heat carrier-experimental study and kinetic modeling," Energy, Elsevier, vol. 135(C), pages 317-326.
    7. Zhang, Hui & Wang, Hong & Zhu, Xun & Qiu, Yong-Jun & Li, Kai & Chen, Rong & Liao, Qiang, 2013. "A review of waste heat recovery technologies towards molten slag in steel industry," Applied Energy, Elsevier, vol. 112(C), pages 956-966.
    8. repec:ipg:wpaper:2014-479 is not listed on IDEAS
    9. Duan, Wenjun & Yu, Qingbo & Liu, Junxiang & Wu, Tianwei & Yang, Fan & Qin, Qin, 2016. "Experimental and kinetic study of steam gasification of low-rank coal in molten blast furnace slag," Energy, Elsevier, vol. 111(C), pages 859-868.
    10. Thai-Thanh Dang & Annabelle Mourougane, 2014. "Estimating Shadow Prices of Pollution in Selected OECD Countries," OECD Green Growth Papers 2014/2, OECD Publishing.
    11. Luo, Siyi & Feng, Yu, 2016. "The production of hydrogen-rich gas by wet sludge pyrolysis using waste heat from blast-furnace slag," Energy, Elsevier, vol. 113(C), pages 845-851.
    12. Barati, M. & Esfahani, S. & Utigard, T.A., 2011. "Energy recovery from high temperature slags," Energy, Elsevier, vol. 36(9), pages 5440-5449.
    13. Chen, Lingen & Shen, Xun & Xia, Shaojun & Sun, Fengrui, 2017. "Thermodynamic analyses for recovering residual heat of high-temperature basic oxygen gas (BOG) by the methane reforming with carbon dioxide reaction," Energy, Elsevier, vol. 118(C), pages 906-913.
    14. Ortega-Fernández, Iñigo & Calvet, Nicolas & Gil, Antoni & Rodríguez-Aseguinolaza, Javier & Faik, Abdessamad & D'Aguanno, Bruno, 2015. "Thermophysical characterization of a by-product from the steel industry to be used as a sustainable and low-cost thermal energy storage material," Energy, Elsevier, vol. 89(C), pages 601-609.
    15. Tola, Vittorio & Pettinau, Alberto, 2014. "Power generation plants with carbon capture and storage: A techno-economic comparison between coal combustion and gasification technologies," Applied Energy, Elsevier, vol. 113(C), pages 1461-1474.
    16. Xia, Yan & Tang, Zhipeng, 2017. "The impacts of emissions accounting methods on an imperfect competitive carbon trading market," Energy, Elsevier, vol. 119(C), pages 67-76.
    17. Wang, Hong & Wu, Jun-Jun & Zhu, Xun & Liao, Qiang & Zhao, Liang, 2016. "Energy–environment–economy evaluations of commercial scale systems for blast furnace slag treatment: Dry slag granulation vs. water quenching," Applied Energy, Elsevier, vol. 171(C), pages 314-324.
    18. Ripa, M. & Fiorentino, G. & Giani, H. & Clausen, A. & Ulgiati, S., 2017. "Refuse recovered biomass fuel from municipal solid waste. A life cycle assessment," Applied Energy, Elsevier, vol. 186(P2), pages 211-225.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Duan, Wenjun & Li, Peishi & Wu, Qinting & Song, Huicong, 2022. "Life cycle assessment of a novel blast furnace slag utilization system," Energy, Elsevier, vol. 251(C).
    2. Wu, Junjun & Tan, Yu & Li, Peng & Wang, Hong & Zhu, Xun & Liao, Qiang, 2022. "Centrifugal-Granulation-Assisted thermal energy recovery towards low-carbon blast furnace slag treatment: State of the art and future challenges," Applied Energy, Elsevier, vol. 325(C).
    3. Wang, Jinda & Sun, Chunhua & Qi, Chengying & Zhou, Zhigang & Zhao, Jianing & Zheng, Jinfu, 2021. "Promoting the performance of district heating from waste heat recovery in China: A general solving framework based on the two-stage branch evaluation method," Energy, Elsevier, vol. 220(C).
    4. Duan, Wenjun & Wu, Qinting & Li, Peishi & Cheng, Peiwen, 2022. "Techno-economic analysis of a novel full-chain blast furnace slag utilization system," Energy, Elsevier, vol. 242(C).
    5. Llera, Rocio & Vigil, Miguel & Díaz-Díaz, Sara & Martínez Huerta, Gemma Marta, 2022. "Prospective environmental and techno-economic assessment of steam production by means of heat pipes in the steel industry," Energy, Elsevier, vol. 239(PD).
    6. Yu, Yang & Li, Baokuan & Wang, Changjun & Fang, Zhengzhe & Yang, Xiao & Tsukihashi, Fumitaka, 2019. "Evaluation and synergy of material and energy in the smelting process of ferrochrome pellets in steel belt sintering-submerged arc furnace," Energy, Elsevier, vol. 179(C), pages 792-804.
    7. Somogyi, Viola & Sebestyén, Viktor & Domokos, Endre, 2018. "Assessment of wastewater heat potential for district heating in Hungary," Energy, Elsevier, vol. 163(C), pages 712-721.
    8. Ramadan, Mohamad & Khaled, Mahmoud & Haddad, Ahmad & Abdulhay, Bakri & Durrant, Andy & El Hage, Hicham, 2018. "An inhouse code for simulating heat recovery from boilers to heat water," Energy, Elsevier, vol. 157(C), pages 200-210.
    9. Yao, Xin & Liu, Yang & Yu, Qingbo & Wang, Shuhuan, 2023. "Energy consumption of two-stage system of biomass pyrolysis and bio-oil reforming to recover waste heat from granulated BF slag," Energy, Elsevier, vol. 273(C).
    10. Duan, Wenjun & Gao, Yunke & Yu, Qingbo & Wu, Tianwei & Wang, Zhimei, 2019. "Numerical simulation of coal gasification in molten slag: Gas-liquid interaction characteristic," Energy, Elsevier, vol. 183(C), pages 1233-1243.
    11. Zhang, Kai & Du, Shiqi & Sun, Peng & Zheng, Bin & Liu, Yongqi & Shen, Yingkai & Chang, RunZe & Han, Xiaobiao, 2021. "The effect of particle arrangement on the direct heat extraction of regular packed bed with numerical simulation," Energy, Elsevier, vol. 225(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sun, Yongqi & Seetharaman, Seshadri & Zhang, Zuotai, 2018. "Integrating biomass pyrolysis with waste heat recovery from hot slags via extending the C-loops: Product yields and roles of slags," Energy, Elsevier, vol. 149(C), pages 792-803.
    2. Zhang, Huining & Dong, Jianping & Wei, Chao & Cao, Caifang & Zhang, Zuotai, 2022. "Future trend of terminal energy conservation in steelmaking plant: Integration of molten slag heat recovery-combustible gas preparation from waste plastics and CO2 emission reduction," Energy, Elsevier, vol. 239(PE).
    3. Yongqi Sun & Zuotai Zhang & Lili Liu & Xidong Wang, 2015. "Heat Recovery from High Temperature Slags: A Review of Chemical Methods," Energies, MDPI, vol. 8(3), pages 1-19, March.
    4. Sun, Yongqi & Seetharaman, Seshadri & Liu, Qianyi & Zhang, Zuotai & Liu, Lili & Wang, Xidong, 2016. "Integrated biomass gasification using the waste heat from hot slags: Control of syngas and polluting gas releases," Energy, Elsevier, vol. 114(C), pages 165-176.
    5. Xie, Huaqing & Li, Rongquan & Yu, Zhenyu & Wang, Zhengyu & Yu, Qingbo & Qin, Qin, 2020. "Combined steam/dry reforming of bio-oil for H2/CO syngas production with blast furnace slag as heat carrier," Energy, Elsevier, vol. 200(C).
    6. Duan, Wenjun & Gao, Yunke & Yu, Qingbo & Wu, Tianwei & Wang, Zhimei, 2019. "Numerical simulation of coal gasification in molten slag: Gas-liquid interaction characteristic," Energy, Elsevier, vol. 183(C), pages 1233-1243.
    7. Suopajärvi, Hannu & Umeki, Kentaro & Mousa, Elsayed & Hedayati, Ali & Romar, Henrik & Kemppainen, Antti & Wang, Chuan & Phounglamcheik, Aekjuthon & Tuomikoski, Sari & Norberg, Nicklas & Andefors, Alf , 2018. "Use of biomass in integrated steelmaking – Status quo, future needs and comparison to other low-CO2 steel production technologies," Applied Energy, Elsevier, vol. 213(C), pages 384-407.
    8. Wu, Junjun & Tan, Yu & Li, Peng & Wang, Hong & Zhu, Xun & Liao, Qiang, 2022. "Centrifugal-Granulation-Assisted thermal energy recovery towards low-carbon blast furnace slag treatment: State of the art and future challenges," Applied Energy, Elsevier, vol. 325(C).
    9. Tan, Yu & Wang, Hong & Zhu, Xun & Lv, Yi-Wen & Ding, Yu-Dong & Liao, Qiang, 2020. "Film fragmentation mode: The most suitable way for centrifugal granulation of large flow rate molten blast slag towards high-efficiency waste heat recovery for industrialization," Applied Energy, Elsevier, vol. 276(C).
    10. Zuo, Zongliang & Feng, Yan & Li, Xiaoteng & Luo, Siyi & Ma, Jinshuang & Sun, Huiping & Bi, Xuejun & Yu, Qingbo & Zhou, Enze & Zhang, Jingkui & Guo, Jianxiang & Lin, Huan, 2021. "Thermal-chemical conversion of sewage sludge based on waste heat cascade recovery of copper slag: Mass and energy analysis," Energy, Elsevier, vol. 235(C).
    11. Mariusz Tańczuk & Maciej Masiukiewicz & Stanisław Anweiler & Robert Junga, 2018. "Technical Aspects and Energy Effects of Waste Heat Recovery from District Heating Boiler Slag," Energies, MDPI, vol. 11(4), pages 1-19, March.
    12. Lv, Yi-Wen & Zhu, Xun & Wang, Hong & Dai, Mao-Lin & Ding, Yu-Dong & Wu, Jun-Jun & Liao, Qiang, 2021. "A hybrid cooling system to enable adhesion-free heat recovery from centrifugal granulated slag particles," Applied Energy, Elsevier, vol. 303(C).
    13. Zhang, Kai & Du, Shiqi & Sun, Peng & Zheng, Bin & Liu, Yongqi & Shen, Yingkai & Chang, RunZe & Han, Xiaobiao, 2021. "The effect of particle arrangement on the direct heat extraction of regular packed bed with numerical simulation," Energy, Elsevier, vol. 225(C).
    14. Sun, Yongqi & Shen, Hongwei & Wang, Hao & Wang, Xidong & Zhang, Zuotai, 2014. "Experimental investigation and modeling of cooling processes of high temperature slags," Energy, Elsevier, vol. 76(C), pages 761-767.
    15. Shen, Chong & Zhang, Maoyong & Li, Xianting, 2017. "Experimental investigation on the thermal performance of cooling pipes embedded in a graphitization furnace," Energy, Elsevier, vol. 121(C), pages 55-65.
    16. Huang, Jintao & Lyu, Sha & Han, He & Wang, Yanjiang & Sun, Haoyang & Su, Jingtao & Liu, Yidong & Min, Yonggang & Sun, Dazhi, 2022. "Enhanced looping biomass/vapour gasification utilizing waste heat from molten copper slags," Energy, Elsevier, vol. 252(C).
    17. Yang, Sheng & Yang, Siyu & Wang, Yifan & Qian, Yu, 2017. "Low grade waste heat recovery with a novel cascade absorption heat transformer," Energy, Elsevier, vol. 130(C), pages 461-472.
    18. Ortega-Fernández, Iñigo & Rodríguez-Aseguinolaza, Javier, 2019. "Thermal energy storage for waste heat recovery in the steelworks: The case study of the REslag project," Applied Energy, Elsevier, vol. 237(C), pages 708-719.
    19. Feng, YanHui & Gao, Jie & Feng, Daili & Zhang, XinXin, 2019. "Modeling of the molten blast furnace slag particle deposition on the wall including phase change and heat transfer," Applied Energy, Elsevier, vol. 248(C), pages 288-298.
    20. Yang, Sheng & Qian, Yu & Wang, Yifan & Yang, Siyu, 2017. "A novel cascade absorption heat transformer process using low grade waste heat and its application to coal to synthetic natural gas," Applied Energy, Elsevier, vol. 202(C), pages 42-52.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:142:y:2018:i:c:p:486-495. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.