IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v102y2016icp397-405.html
   My bibliography  Save this article

Case study on industrial surplus heat of steel plants for district heating in Northern China

Author

Listed:
  • Li, Yemao
  • Xia, Jianjun
  • Fang, Hao
  • Su, Yingbo
  • Jiang, Yi

Abstract

In China, district heating systems are facing a dilemma between rapid growth in demand owing to urbanization and environmental problems related to coal-fired boilers. The utilization of industrial surplus heat has great potential on improving the power of heating systems and reducing coal consumption of boilers. However, few industrial systems are constructed under the consideration of district heating. Some features of the surplus heat, such as the position, grade, and production schedule, are significantly different to traditional heat sources. To recover the surplus heat, retrofits of district heating systems are necessary. In this paper, according to the current situations and the future developments, a scheme is proposed to integrate the surplus heat of two steel plants into a large-scale district heating network. Three sources of surplus heat are involved: slag-flushing water, cooling water, and low-pressure steam. The scheme has been partly applied in a corresponding demonstration project. The actual performance proves the feasibility of the integrated system and implies significant benefits in terms of economic cost, CO2 emission and pollutant emissions. Furthermore, the potential to extend the scheme in Northern China is also evaluated.

Suggested Citation

  • Li, Yemao & Xia, Jianjun & Fang, Hao & Su, Yingbo & Jiang, Yi, 2016. "Case study on industrial surplus heat of steel plants for district heating in Northern China," Energy, Elsevier, vol. 102(C), pages 397-405.
  • Handle: RePEc:eee:energy:v:102:y:2016:i:c:p:397-405
    DOI: 10.1016/j.energy.2016.02.105
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544216301670
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2016.02.105?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Li, Hongwei & Svendsen, Svend, 2012. "Energy and exergy analysis of low temperature district heating network," Energy, Elsevier, vol. 45(1), pages 237-246.
    2. Fang, Hao & Xia, Jianjun & Jiang, Yi, 2015. "Key issues and solutions in a district heating system using low-grade industrial waste heat," Energy, Elsevier, vol. 86(C), pages 589-602.
    3. Chen, Xia & Wang, Li & Tong, Lige & Sun, Shufeng & Yue, Xianfang & Yin, Shaowu & Zheng, Lifang, 2013. "Energy saving and emission reduction of China's urban district heating," Energy Policy, Elsevier, vol. 55(C), pages 677-682.
    4. Wang, Sheng & Xie, Xiaoyun & Jiang, Yi, 2014. "Optimization design of the large temperature lift/drop multi-stage vertical absorption temperature transformer based on entransy dissipation method," Energy, Elsevier, vol. 68(C), pages 712-721.
    5. Kandilli, Canan & Koclu, Aytac, 2011. "Assessment of the optimum operation conditions of a plate heat exchanger for waste heat recovery in textile industry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 4424-4431.
    6. Xiong, Weiming & Wang, Yu & Mathiesen, Brian Vad & Lund, Henrik & Zhang, Xiliang, 2015. "Heat roadmap China: New heat strategy to reduce energy consumption towards 2030," Energy, Elsevier, vol. 81(C), pages 274-285.
    7. Kapil, Ankur & Bulatov, Igor & Smith, Robin & Kim, Jin-Kuk, 2012. "Process integration of low grade heat in process industry with district heating networks," Energy, Elsevier, vol. 44(1), pages 11-19.
    8. Morandin, Matteo & Hackl, Roman & Harvey, Simon, 2014. "Economic feasibility of district heating delivery from industrial excess heat: A case study of a Swedish petrochemical cluster," Energy, Elsevier, vol. 65(C), pages 209-220.
    9. Lund, Henrik & Werner, Sven & Wiltshire, Robin & Svendsen, Svend & Thorsen, Jan Eric & Hvelplund, Frede & Mathiesen, Brian Vad, 2014. "4th Generation District Heating (4GDH)," Energy, Elsevier, vol. 68(C), pages 1-11.
    10. Hammond, G.P. & Norman, J.B., 2014. "Heat recovery opportunities in UK industry," Applied Energy, Elsevier, vol. 116(C), pages 387-397.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dominković, D.F. & Bačeković, I. & Sveinbjörnsson, D. & Pedersen, A.S. & Krajačić, G., 2017. "On the way towards smart energy supply in cities: The impact of interconnecting geographically distributed district heating grids on the energy system," Energy, Elsevier, vol. 137(C), pages 941-960.
    2. Guelpa, Elisa & Bischi, Aldo & Verda, Vittorio & Chertkov, Michael & Lund, Henrik, 2019. "Towards future infrastructures for sustainable multi-energy systems: A review," Energy, Elsevier, vol. 184(C), pages 2-21.
    3. Fu, Lin & Li, Yonghong & Wu, Yanting & Wang, Xiaoyin & Jiang, Yi, 2021. "Low carbon district heating in China in 2025- a district heating mode with low grade waste heat as heat source," Energy, Elsevier, vol. 230(C).
    4. Luo, Ao & Fang, Hao & Xia, Jianjun & Lin, Borong & jiang, Yi, 2017. "Mapping potentials of low-grade industrial waste heat in Northern China," Resources, Conservation & Recycling, Elsevier, vol. 125(C), pages 335-348.
    5. Kavvadias, Konstantinos C. & Quoilin, Sylvain, 2018. "Exploiting waste heat potential by long distance heat transmission: Design considerations and techno-economic assessment," Applied Energy, Elsevier, vol. 216(C), pages 452-465.
    6. Lake, Andrew & Rezaie, Behanz & Beyerlein, Steven, 2017. "Review of district heating and cooling systems for a sustainable future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 417-425.
    7. Guelpa, Elisa & Verda, Vittorio, 2019. "Thermal energy storage in district heating and cooling systems: A review," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    8. Werner, Sven, 2017. "International review of district heating and cooling," Energy, Elsevier, vol. 137(C), pages 617-631.
    9. Lingwei Zhang & Yufei Wang & Xiao Feng, 2021. "A Framework for Design and Operation Optimization for Utilizing Low-Grade Industrial Waste Heat in District Heating and Cooling," Energies, MDPI, vol. 14(8), pages 1-21, April.
    10. Li, Yemao & Pan, Wenbiao & Xia, Jianjun & Jiang, Yi, 2019. "Combined heat and water system for long-distance heat transportation," Energy, Elsevier, vol. 172(C), pages 401-408.
    11. Lund, Henrik & Østergaard, Poul Alberg & Chang, Miguel & Werner, Sven & Svendsen, Svend & Sorknæs, Peter & Thorsen, Jan Eric & Hvelplund, Frede & Mortensen, Bent Ole Gram & Mathiesen, Brian Vad & Boje, 2018. "The status of 4th generation district heating: Research and results," Energy, Elsevier, vol. 164(C), pages 147-159.
    12. Weinberger, Gottfried & Amiri, Shahnaz & Moshfegh, Bahram, 2017. "On the benefit of integration of a district heating system with industrial excess heat: An economic and environmental analysis," Applied Energy, Elsevier, vol. 191(C), pages 454-468.
    13. Liew, Peng Yen & Theo, Wai Lip & Wan Alwi, Sharifah Rafidah & Lim, Jeng Shiun & Abdul Manan, Zainuddin & Klemeš, Jiří Jaromír & Varbanov, Petar Sabev, 2017. "Total Site Heat Integration planning and design for industrial, urban and renewable systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P2), pages 964-985.
    14. Zhang, Lipeng & Xia, Jianjun & Thorsen, Jan Eric & Gudmundsson, Oddgeir & Li, Hongwei & Svendsen, Svend, 2016. "Technical, economic and environmental investigation of using district heating to prepare domestic hot water in Chinese multi-storey buildings," Energy, Elsevier, vol. 116(P1), pages 281-292.
    15. Lund, Henrik & Werner, Sven & Wiltshire, Robin & Svendsen, Svend & Thorsen, Jan Eric & Hvelplund, Frede & Mathiesen, Brian Vad, 2014. "4th Generation District Heating (4GDH)," Energy, Elsevier, vol. 68(C), pages 1-11.
    16. Zhang, Yichi & Xia, Jianjun & Fang, Hao & Zuo, Hetao & Jiang, Yi, 2019. "Roadmap towards clean heating in 2035: Case study of inner Mongolia, China," Energy, Elsevier, vol. 189(C).
    17. Mazhar, Abdur Rehman & Liu, Shuli & Shukla, Ashish, 2018. "A state of art review on the district heating systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 420-439.
    18. Li, Haoran & Hou, Juan & Hong, Tianzhen & Nord, Natasa, 2022. "Distinguish between the economic optimal and lowest distribution temperatures for heat-prosumer-based district heating systems with short-term thermal energy storage," Energy, Elsevier, vol. 248(C).
    19. Sayegh, M.A. & Danielewicz, J. & Nannou, T. & Miniewicz, M. & Jadwiszczak, P. & Piekarska, K. & Jouhara, H., 2017. "Trends of European research and development in district heating technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P2), pages 1183-1192.
    20. Cai, Hanmin & You, Shi & Wu, Jianzhong, 2020. "Agent-based distributed demand response in district heating systems," Applied Energy, Elsevier, vol. 262(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:102:y:2016:i:c:p:397-405. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.