IDEAS home Printed from https://ideas.repec.org/r/eee/energy/v102y2016icp397-405.html
   My bibliography  Save this item

Case study on industrial surplus heat of steel plants for district heating in Northern China

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Jodeiri, A.M. & Goldsworthy, M.J. & Buffa, S. & Cozzini, M., 2022. "Role of sustainable heat sources in transition towards fourth generation district heating – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
  2. Duan, Wenjun & Yu, Qingbo & Wang, Zhimei & Liu, Junxiang & Qin, Qin, 2018. "Life cycle and economic assessment of multi-stage blast furnace slag waste heat recovery system," Energy, Elsevier, vol. 142(C), pages 486-495.
  3. Bertrand, Alexandre & Mian, Alberto & Kantor, Ivan & Aggoune, Riad & Maréchal, François, 2019. "Regional waste heat valorisation: A mixed integer linear programming method for energy service companies," Energy, Elsevier, vol. 167(C), pages 454-468.
  4. Anton Beck & Julian Unterluggauer & Franz Helminger & Irene Solís-Gallego, 2023. "Decarbonisation Pathways for the Finishing Line in a Steel Plant and Their Implications for Heat Recovery Measures," Energies, MDPI, vol. 16(2), pages 1-21, January.
  5. Bossink, Bart A.G., 2017. "Demonstrating sustainable energy: A review based model of sustainable energy demonstration projects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 1349-1362.
  6. Li, Yemao & Xia, Jianjun & Su, Yingbo & Jiang, Yi, 2018. "Systematic optimization for the utilization of low-temperature industrial excess heat for district heating," Energy, Elsevier, vol. 144(C), pages 984-991.
  7. Zhang, Lipeng & Xia, Jianjun & Thorsen, Jan Eric & Gudmundsson, Oddgeir & Li, Hongwei & Svendsen, Svend, 2016. "Technical, economic and environmental investigation of using district heating to prepare domestic hot water in Chinese multi-storey buildings," Energy, Elsevier, vol. 116(P1), pages 281-292.
  8. Wang, Hai & Meng, Hua, 2018. "Improved thermal transient modeling with new 3-order numerical solution for a district heating network with consideration of the pipe wall's thermal inertia," Energy, Elsevier, vol. 160(C), pages 171-183.
  9. Guo, Fang & Zhu, Xiaoyue & Li, Pengchao & Yang, Xudong, 2022. "Low-grade industrial waste heat utilization in urban district heating: Simulation-based performance assessment of a seasonal thermal energy storage system," Energy, Elsevier, vol. 239(PE).
  10. Pizzolato, Alberto & Sciacovelli, Adriano & Verda, Vittorio, 2019. "Centralized control of district heating networks during failure events using discrete adjoint sensitivities," Energy, Elsevier, vol. 184(C), pages 58-72.
  11. Yang, Bo & Yuan, Weixing & Fu, Lin & Zhang, Shigang & Wei, Maolin & Guo, Dongcai, 2020. "Techno-economic study of full-open absorption heat pump applied to flue gas total heat recovery," Energy, Elsevier, vol. 190(C).
  12. Jabari, Farkhondeh & Mohammadi-ivatloo, Behnam & Bannae Sharifian, Mohammad Bagher & Nojavan, Sayyad, 2018. "Design and robust optimization of a novel industrial continuous heat treatment furnace," Energy, Elsevier, vol. 142(C), pages 896-910.
  13. Edward Wheatcroft & Henry Wynn & Kristina Lygnerud & Giorgio Bonvicini, 2019. "The role of low temperature waste heat recovery in achieving 2050 goals: a policy positioning paper," Papers 1912.06558, arXiv.org.
  14. Luo, Ao & Fang, Hao & Xia, Jianjun & Lin, Borong & jiang, Yi, 2017. "Mapping potentials of low-grade industrial waste heat in Northern China," Resources, Conservation & Recycling, Elsevier, vol. 125(C), pages 335-348.
  15. Edward Wheatcroft & Henry Wynn & Kristina Lygnerud & Giorgio Bonvicini & Daniela Leonte, 2020. "The Role of Low Temperature Waste Heat Recovery in Achieving 2050 Goals: A Policy Positioning Paper," Energies, MDPI, vol. 13(8), pages 1-19, April.
  16. Li, Yemao & Pan, Wenbiao & Xia, Jianjun & Jiang, Yi, 2019. "Combined heat and water system for long-distance heat transportation," Energy, Elsevier, vol. 172(C), pages 401-408.
  17. Yongxia Ding & Wei Qu & Shuwen Niu & Man Liang & Wenli Qiang & Zhenguo Hong, 2016. "Factors Influencing the Spatial Difference in Household Energy Consumption in China," Sustainability, MDPI, vol. 8(12), pages 1-20, December.
  18. Wang, Hai & Wang, Haiying & Haijian, Zhou & Zhu, Tong, 2017. "Optimization modeling for smart operation of multi-source district heating with distributed variable-speed pumps," Energy, Elsevier, vol. 138(C), pages 1247-1262.
  19. Wang, Yaran & You, Shijun & Zhang, Huan & Zheng, Wandong & Zheng, Xuejing & Miao, Qingwei, 2017. "Hydraulic performance optimization of meshed district heating network with multiple heat sources," Energy, Elsevier, vol. 126(C), pages 603-621.
  20. Zhang, Yichi & Xia, Jianjun & Fang, Hao & Zuo, Hetao & Jiang, Yi, 2019. "Roadmap towards clean heating in 2035: Case study of inner Mongolia, China," Energy, Elsevier, vol. 189(C).
  21. Sun, Yongqi & Seetharaman, Seshadri & Zhang, Zuotai, 2018. "Integrating biomass pyrolysis with waste heat recovery from hot slags via extending the C-loops: Product yields and roles of slags," Energy, Elsevier, vol. 149(C), pages 792-803.
  22. Weinberger, Gottfried & Amiri, Shahnaz & Moshfegh, Bahram, 2017. "On the benefit of integration of a district heating system with industrial excess heat: An economic and environmental analysis," Applied Energy, Elsevier, vol. 191(C), pages 454-468.
  23. Wheatcroft, Edward & Wynn, Henry P. & Lygnerud, Kristina & Bonvicini, Giorgio & Bonvicini, Giorgio & Lenote, Daniela, 2020. "The role of low temperature waste heat recovery in achieving 2050 goals: a policy positioning paper," LSE Research Online Documents on Economics 104136, London School of Economics and Political Science, LSE Library.
  24. Sun, Fangtian & Li, Junlong & Fu, Lin & Li, Yonghong & Wang, Ruixiang & Zhang, Shigang, 2020. "New configurations of district heating and cooling system based on absorption and compression chillers driven by waste heat of flue gas from coke ovens," Energy, Elsevier, vol. 193(C).
  25. Fangtian Sun & Yonghua Xie & Svend Svendsen & Lin Fu, 2020. "New Low-Temperature Central Heating System Integrated with Industrial Exhausted Heat Using Distributed Electric Compression Heat Pumps for Higher Energy Efficiency," Energies, MDPI, vol. 13(24), pages 1-17, December.
  26. Werner, Sven, 2017. "International review of district heating and cooling," Energy, Elsevier, vol. 137(C), pages 617-631.
  27. Wenqiang Sun & Zuquan Zhao & Yanhui Wang, 2017. "Thermal Analysis of a Thermal Energy Storage Unit to Enhance a Workshop Heating System Driven by Industrial Residual Water," Energies, MDPI, vol. 10(2), pages 1-19, February.
  28. Lygnerud, Kristina & Werner, Sven, 2018. "Risk assessment of industrial excess heat recovery in district heating systems," Energy, Elsevier, vol. 151(C), pages 430-441.
  29. Ahn, Jonghoon & Chung, Dae Hun & Cho, Soolyeon, 2018. "Energy cost analysis of an intelligent building network adopting heat trading concept in a district heating model," Energy, Elsevier, vol. 151(C), pages 11-25.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.