IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v254y2022ipbs036054422201204x.html
   My bibliography  Save this article

Effect of hierarchical pore structure of oxygen carrier on the performance of biomass chemical looping hydrogen generation

Author

Listed:
  • Chang, Yuxue
  • Li, Guang
  • Ma, Shuqi
  • Zhao, Xiaolei
  • Li, Na
  • Zhou, Xing
  • Zhang, Yulong

Abstract

Biomass chemical looping hydrogen generation is known as a promising technique that converts biomass and water into hydrogen with inherent CO2 separation. In this study, effect of hierarchical pore structure of oxygen carrier on the performance of the biomass chemical looping hydrogen generation is investigated. The results show that oxygen carrier Fe2O3/Al2O3 with 0.09 g poly (ethylene oxide) can simultaneously improve the redox stability and activity. The hydrogen production of Fe2O3/Al2O3 with 0.09 g poly (ethylene oxide) and Fe2O3/Al2O3 without poly (ethylene oxide) are 343 ml H2/g oxygen carrier and 79 ml H2/g oxygen carrier, respectively. The above results are attributed to the hierarchical pore structure of the Fe2O3/Al2O3 with 0.09 g poly (ethylene oxide), which can create more active sites and prolong the contact time between the reactant and the oxygen carrier. Furthermore, the hierarchical pore structure of the oxygen carrier studied in this paper can be extended to design high active and stable oxygen carrier.

Suggested Citation

  • Chang, Yuxue & Li, Guang & Ma, Shuqi & Zhao, Xiaolei & Li, Na & Zhou, Xing & Zhang, Yulong, 2022. "Effect of hierarchical pore structure of oxygen carrier on the performance of biomass chemical looping hydrogen generation," Energy, Elsevier, vol. 254(PB).
  • Handle: RePEc:eee:energy:v:254:y:2022:i:pb:s036054422201204x
    DOI: 10.1016/j.energy.2022.124301
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054422201204X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.124301?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ma, Zherui & Wang, Jiangjiang & Dong, Fuxiang & Han, Zepeng & Tian, Lei & Yan, Rujing & Liang, Zhanwei, 2022. "Thermodynamic analysis of fuel-cell-based combined cooling, heating, and power system integrated solar energy and chemical looping hydrogen generation," Energy, Elsevier, vol. 238(PC).
    2. Samprón, Iván & de Diego, Luis F. & García-Labiano, Francisco & Izquierdo, María T., 2021. "Optimization of synthesis gas production in the biomass chemical looping gasification process operating under auto-thermal conditions," Energy, Elsevier, vol. 226(C).
    3. Surywanshi, Gajanan Dattarao & Patnaikuni, Venkata Suresh & Vooradi, Ramsagar & Anne, Sarath Babu, 2021. "4-E and life cycle analyses of a supercritical coal direct chemical looping combustion power plant with hydrogen and power co-generation," Energy, Elsevier, vol. 217(C).
    4. Shi, Bin & Wen, Fang & Wu, Wei, 2020. "Performance evaluation of air-blown IGCC polygeneration plants using chemical looping hydrogen generation and methanol synthesis loop," Energy, Elsevier, vol. 200(C).
    5. Li, Guang & Chang, Yuxue & Liu, Tao & Yu, Zhongliang & Liu, Zheyu & Liu, Fan & Ma, Shuqi & Weng, Yujing & Zhang, Yulong, 2020. "Hydrogen element flow and economic analyses of a coal direct chemical looping hydrogen generation process," Energy, Elsevier, vol. 206(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Quan, Jinxia & Miao, Zhenwu & Lin, Yousheng & Lv, Juan & Liu, Hailu & Feng, Chunzhou & Jiang, Enchen & Hu, Zhifeng, 2023. "Agglomeration mechanism of Fe2O3/Al2O3 oxygen carrier in chemical looping gasification," Energy, Elsevier, vol. 284(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Xun & Fu, Genshen & Xiao, Bo & Xu, Tingting, 2022. "Optimization of nickel-iron bimetallic oxides for coproduction of hydrogen and syngas in chemical looping reforming with water splitting process," Energy, Elsevier, vol. 246(C).
    2. Wang, Xudong & Shao, Yali & Jin, Baosheng, 2021. "Thermodynamic evaluation and modelling of an auto-thermal hybrid system of chemical looping combustion and air separation for power generation coupling with CO2 cycles," Energy, Elsevier, vol. 236(C).
    3. Ammar Bany Ata & Peter Maximilian Seufert & Christian Heinze & Falah Alobaid & Bernd Epple, 2021. "Optimization of Integrated Gasification Combined-Cycle Power Plant for Polygeneration of Power and Chemicals," Energies, MDPI, vol. 14(21), pages 1-24, November.
    4. Zheng, Nan & Zhang, Hanfei & Duan, Liqiang & Wang, Qiushi & Bischi, Aldo & Desideri, Umberto, 2023. "Techno-economic analysis of a novel solar-driven PEMEC-SOFC-based multi-generation system coupled parabolic trough photovoltaic thermal collector and thermal energy storage," Applied Energy, Elsevier, vol. 331(C).
    5. Xu, Qilong & Wang, Shuai & Luo, Kun & Mu, Yanfei & Pan, Lu & Fan, Jianren, 2023. "Process modelling and optimization of a 250 MW IGCC system: ASU optimization and thermodynamic analysis," Energy, Elsevier, vol. 282(C).
    6. Zhang, Zhixiang & Yuan, Han & Mei, Ning, 2023. "Theoretical analysis on extraction-ejection combined power and refrigeration cycle for ocean thermal energy conversion," Energy, Elsevier, vol. 273(C).
    7. Surywanshi, Gajanan Dattarao & Patnaikuni, Venkata Suresh & Vooradi, Ramsagar & Anne, Sarath Babu, 2021. "4-E and life cycle analyses of a supercritical coal direct chemical looping combustion power plant with hydrogen and power co-generation," Energy, Elsevier, vol. 217(C).
    8. Zheng, Nan & Zhang, Hanfei & Duan, Liqiang & Wang, Xiaomeng & Wang, Qiushi & Liu, Luyao, 2023. "Multi-criteria performance analysis and optimization of a solar-driven CCHP system based on PEMWE, SOFC, TES, and novel PVT for hotel and office buildings," Renewable Energy, Elsevier, vol. 206(C), pages 1249-1264.
    9. Duan, Wenjun & Wu, Qinting & Li, Peishi & Cheng, Peiwen, 2022. "Techno-economic analysis of a novel full-chain blast furnace slag utilization system," Energy, Elsevier, vol. 242(C).
    10. Wang, Heng & Zhao, Hongbin & Du, Huicheng & Zhao, Zefeng & Zhang, Taiheng, 2022. "Thermodynamic performance study of a new diesel-fueled CLHG/SOFC/STIG cogeneration system with CO2 recovery," Energy, Elsevier, vol. 246(C).
    11. Zhang, Hui & Wang, Jiye & Zhao, Xiongwen & Yang, Jingqi & Bu sinnah, Zainab Ali, 2023. "Modeling a hydrogen-based sustainable multi-carrier energy system using a multi-objective optimization considering embedded joint chance constraints," Energy, Elsevier, vol. 278(C).
    12. Byun, Manhee & Choe, Changgwon & Cheon, Seunghyun & Lee, Aejin & Lim, Hankwon, 2022. "Statistical and stochastic feasibility studies of potential liquid organic hydrogen carriers in a membrane reactor for simultaneous hydrogen storage and production: Technical, economic, and environmen," Renewable Energy, Elsevier, vol. 195(C), pages 1393-1411.
    13. Khasani, & Prasidha, Willie & Widyatama, Arif & Aziz, Muhammad, 2021. "Energy-saving and environmentally-benign integrated ammonia production system," Energy, Elsevier, vol. 235(C).
    14. Violeta Motuzienė & Kęstutis Čiuprinskas & Artur Rogoža & Vilūnė Lapinskienė, 2022. "A Review of the Life Cycle Analysis Results for Different Energy Conversion Technologies," Energies, MDPI, vol. 15(22), pages 1-26, November.
    15. Surywanshi, Gajanan Dattarao & Patnaikuni, Venkata Suresh & Vooradi, Ramsagar & Kakunuri, Manohar, 2021. "CO2 capture and utilization from supercritical coal direct chemical looping combustion power plant – Comprehensive analysis of different case studies," Applied Energy, Elsevier, vol. 304(C).
    16. Ángel Darío González-Delgado & Janet B. García-Martínez & Andrés F. Barajas-Solano, 2022. "A Technoeconomic Resilience and Exergy Analysis Approach for the Evaluation of a Vaccine Production Plant in North-East Colombia," Sustainability, MDPI, vol. 15(1), pages 1-16, December.
    17. Zheng, Nan & Zhang, Hanfei & Duan, Liqiang & Wang, Qiushi, 2023. "Comprehensive sustainability assessment of a novel solar-driven PEMEC-SOFC-based combined cooling, heating, power, and storage (CCHPS) system based on life cycle method," Energy, Elsevier, vol. 265(C).
    18. Meng, Sai & Zulli, Paul & Yang, Chaohe & Wang, Zhe & Meng, Qingbo & Zhang, Guangqing, 2022. "Energy and exergy analyses of an intensified char gasification process," Energy, Elsevier, vol. 239(PD).
    19. Lin, Xiaolong & Liu, Yinhe & Song, Huchao & Liu, Yugang, 2023. "System design for 700 °C power plants: Integration scheme and performance evaluation," Energy, Elsevier, vol. 267(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:254:y:2022:i:pb:s036054422201204x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.