IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v284y2023ics036054422302594x.html
   My bibliography  Save this article

Agglomeration mechanism of Fe2O3/Al2O3 oxygen carrier in chemical looping gasification

Author

Listed:
  • Quan, Jinxia
  • Miao, Zhenwu
  • Lin, Yousheng
  • Lv, Juan
  • Liu, Hailu
  • Feng, Chunzhou
  • Jiang, Enchen
  • Hu, Zhifeng

Abstract

In chemical looping gasification (CLG), as one of the most commonly used oxygen carrier (OC), agglomeration is one of the most crucial triggers of Fe2O3/Al2O3 OC deactivation. However, the formation mechanism of agglomeration is not clear due to the complexity of the interaction between biomass and OC. In this study, we investigated agglomeration process of Fe2O3/Al2O3 OC in CLG from two dimensions of time and space. The results showed that in the time dimension, after ten cycles, the DT (deformation temperature) of the spent OC decreased by 5.39%, showing melting point was lower after cycles. Meanwhile, it caused the significant increase of the average particle size (59.73%) and the agglomeration degree (120.13%), indicating more severe agglomeration. Further, it led an obvious decrease in the CLG performance of efficiencies and gas yield. In the space dimension, when agglomeration occurred, low melting point K and Na compounds would first melt on the OC surface to form the K–Na inner layer (KAlSi2O6 and NaAlSiO4). As the reaction continued, high melting point Ca and Mg compounds would also be adhered to the surface of inner layer to form the Ca–Mg outer layer (CaAl2Si2O8 and Mg4Al10Si2O23), resulting in the continuous increase of OC particle size. In addition, more molten substances of KAlSi2O6 and NaAlSiO4 would lead to more adhesion between the OC particles.

Suggested Citation

  • Quan, Jinxia & Miao, Zhenwu & Lin, Yousheng & Lv, Juan & Liu, Hailu & Feng, Chunzhou & Jiang, Enchen & Hu, Zhifeng, 2023. "Agglomeration mechanism of Fe2O3/Al2O3 oxygen carrier in chemical looping gasification," Energy, Elsevier, vol. 284(C).
  • Handle: RePEc:eee:energy:v:284:y:2023:i:c:s036054422302594x
    DOI: 10.1016/j.energy.2023.129200
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054422302594X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.129200?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhou, Chunguang & Rosén, Christer & Engvall, Klas, 2016. "Biomass oxygen/steam gasification in a pressurized bubbling fluidized bed: Agglomeration behavior," Applied Energy, Elsevier, vol. 172(C), pages 230-250.
    2. Liu, Yingzu & He, Yong & Wang, Zhihua & Xia, Jun & Wan, Kaidi & Whiddon, Ronald & Cen, Kefa, 2018. "Characteristics of alkali species release from a burning coal/biomass blend," Applied Energy, Elsevier, vol. 215(C), pages 523-531.
    3. Morris, Jonathan D. & Daood, Syed Sheraz & Nimmo, William, 2022. "The use of kaolin and dolomite bed additives as an agglomeration mitigation method for wheat straw and miscanthus biomass fuels in a pilot-scale fluidized bed combustor," Renewable Energy, Elsevier, vol. 196(C), pages 749-762.
    4. Furuvik, Nora C.I.S. & Wang, Liang & Jaiswal, Rajan & Thapa, Rajan & Eikeland, Marianne S. & Moldestad, Britt M.E., 2022. "Experimental study and SEM-EDS analysis of agglomerates from gasification of biomass in fluidized beds," Energy, Elsevier, vol. 252(C).
    5. Chang, Yuxue & Li, Guang & Ma, Shuqi & Zhao, Xiaolei & Li, Na & Zhou, Xing & Zhang, Yulong, 2022. "Effect of hierarchical pore structure of oxygen carrier on the performance of biomass chemical looping hydrogen generation," Energy, Elsevier, vol. 254(PB).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Long, Xiaofei & Li, Jianbo & Wu, Qi & Lu, Xiaofeng & Zhang, Yuanyuan & Li, Dongfang & Jeon, Chung-Hwan & Zhang, Dongke, 2024. "Inhibiting agglomeration of bed particles in CFB burning high-alkali fuel: Experiment, mechanisms and criteria for recirculating bottom ash or selecting alternative bed materials," Energy, Elsevier, vol. 289(C).
    2. Li, Fenghai & Li, Yang & Fan, Hongli & Wang, Tao & Guo, Mingxi & Fang, Yitian, 2019. "Investigation on fusion characteristics of deposition from biomass vibrating grate furnace combustion and its modification," Energy, Elsevier, vol. 174(C), pages 724-734.
    3. AlNouss, Ahmed & McKay, Gordon & Al-Ansari, Tareq, 2020. "Enhancing waste to hydrogen production through biomass feedstock blending: A techno-economic-environmental evaluation," Applied Energy, Elsevier, vol. 266(C).
    4. Li, Fenghai & Liu, Quanrun & Li, Meng & Fang, Yitian, 2018. "Understanding fly-ash formation during fluidized-bed gasification of high-silicon-aluminum coal based on its characteristics," Energy, Elsevier, vol. 150(C), pages 142-152.
    5. Wang, Qian & Han, Kuihua & Wang, Peifu & Li, Shijie & Zhang, Mingyang, 2020. "Influence of additive on ash and combustion characteristics during biomass combustion under O2/CO2 atmosphere," Energy, Elsevier, vol. 195(C).
    6. Sher, Farooq & Yaqoob, Aqsa & Saeed, Farrukh & Zhang, Shengfu & Jahan, Zaib & Klemeš, Jiří Jaromír, 2020. "Torrefied biomass fuels as a renewable alternative to coal in co-firing for power generation," Energy, Elsevier, vol. 209(C).
    7. Kuba, Matthias & Kraft, Stephan & Kirnbauer, Friedrich & Maierhans, Frank & Hofbauer, Hermann, 2018. "Influence of controlled handling of solid inorganic materials and design changes on the product gas quality in dual fluid bed gasification of woody biomass," Applied Energy, Elsevier, vol. 210(C), pages 230-240.
    8. Espinoza-Monje, J. Flavio & Garcés, Hugo O. & Díaz, Juan & Adam, Roman & Lazo, Jorge & Muñoz, Robinson & Coronado, Matías & Saiz, Gustavo & Azócar, Laura, 2024. "Investigating the properties of shrub biomass pellets through additive and sawdust admixing," Renewable Energy, Elsevier, vol. 229(C).
    9. Sylvie Valin & Serge Ravel & Philippe Pons de Vincent & Sébastien Thiery & Hélène Miller & Françoise Defoort & Maguelone Grateau, 2020. "Fluidised Bed Gasification of Diverse Biomass Feedstocks and Blends—An Overall Performance Study," Energies, MDPI, vol. 13(14), pages 1-19, July.
    10. Li, Jie & Chang, Guozhang & Song, Ke & Hao, Bolun & Wang, Cuiping & Zhang, Jian & Yue, Guangxi & Hu, Shugang, 2023. "Influence of coal bottom ash additives on catalytic reforming of biomass pyrolysis gaseous tar and biochar/steam gasification reactivity," Renewable Energy, Elsevier, vol. 203(C), pages 434-444.
    11. Wan, Kaidi & Vervisch, Luc & Gao, Zhenxun & Domingo, Pascale & Jiang, Chongwen & Xia, Jun & Wang, Zhihua, 2020. "Development of reduced and optimized reaction mechanism for potassium emissions during biomass combustion based on genetic algorithms," Energy, Elsevier, vol. 211(C).
    12. AlNouss, Ahmed & Parthasarathy, Prakash & Shahbaz, Muhammad & Al-Ansari, Tareq & Mackey, Hamish & McKay, Gordon, 2020. "Techno-economic and sensitivity analysis of coconut coir pith-biomass gasification using ASPEN PLUS," Applied Energy, Elsevier, vol. 261(C).
    13. Kuo, Hsiu-Po & Hou, Bo-Ren & Huang, An-Ni, 2017. "The influences of the gas fluidization velocity on the properties of bio-oils from fluidized bed pyrolyzer with in-line distillation," Applied Energy, Elsevier, vol. 194(C), pages 279-286.
    14. Jing Zheng & Chuanchuan Cai & Tao Ge & Mingxu Zhang, 2024. "Effect of Potassium on the Co-Combustion Process of Coal Slime and Corn Stover," Energies, MDPI, vol. 17(20), pages 1-12, October.
    15. Sher, Farooq & Smječanin, Narcisa & Khan, Muhammad Kashif & Shabbir, Imran & Ali, Salman & Hatshan, Mohammad Rafe & Ul Hai, Irfan, 2024. "Agglomeration behaviour of various biomass fuels under different air staging conditions in fluidised bed technology for renewable energy applications," Renewable Energy, Elsevier, vol. 227(C).
    16. Ghazidin, Hafizh & Suyatno, Suyatno & Prismantoko, Adi & Karuana, Feri & Sarjono, & Prabowo, & Setiyawan, Atok & Darmawan, Arif & Aziz, Muhammad & Vuthaluru, Hari & Hariana, Hariana, 2024. "Impact of additives in mitigating ash-related problems during co-combustion of solid recovered fuel and high-sulfur coal," Energy, Elsevier, vol. 292(C).
    17. Fürsatz, K. & Fuchs, J. & Benedikt, F. & Kuba, M. & Hofbauer, H., 2021. "Effect of biomass fuel ash and bed material on the product gas composition in DFB steam gasification," Energy, Elsevier, vol. 219(C).
    18. Jun Zhang & Yanmin Li & Lin Mei & Xiaoliang Yu & Xun Lv & Jinping Wang & Jin Yan & Rongyue Sun, 2023. "Study on the Effect of Secondary Air Layout on CO Reduction Performance in a 75 t/h Biomass CFB Boiler Burning Wheat Straw," Energies, MDPI, vol. 16(8), pages 1-15, April.
    19. Zhao, Chuanwen & Guo, Yafei & Yan, Junjie & Sun, Jian & Li, Weiling & Lu, Ping, 2019. "Enhanced CO2 sorption capacity of amine-tethered fly ash residues derived from co-firing of coal and biomass blends," Applied Energy, Elsevier, vol. 242(C), pages 453-461.
    20. Zhang, Yufeng & Xie, Xingyun & Zhao, Jing & Wei, Xiaolin, 2020. "The alkali metal occurrence characteristics and its release and conversion during wheat straw pyrolysis," Renewable Energy, Elsevier, vol. 151(C), pages 255-262.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:284:y:2023:i:c:s036054422302594x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.