Techno-economic and sensitivity analysis of coconut coir pith-biomass gasification using ASPEN PLUS
Author
Abstract
Suggested Citation
DOI: 10.1016/j.apenergy.2019.114350
Download full text from publisher
As the access to this document is restricted, you may want to
for a different version of it.References listed on IDEAS
- Saxena, R.C. & Seal, Diptendu & Kumar, Satinder & Goyal, H.B., 2008. "Thermo-chemical routes for hydrogen rich gas from biomass: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(7), pages 1909-1927, September.
- Miguel-Angel Perea-Moreno & Esther Samerón-Manzano & Alberto-Jesus Perea-Moreno, 2019. "Biomass as Renewable Energy: Worldwide Research Trends," Sustainability, MDPI, vol. 11(3), pages 1-19, February.
- Zhou, Chunguang & Rosén, Christer & Engvall, Klas, 2016. "Biomass oxygen/steam gasification in a pressurized bubbling fluidized bed: Agglomeration behavior," Applied Energy, Elsevier, vol. 172(C), pages 230-250.
- Ngo, Son Ich & Nguyen, Thanh D.B. & Lim, Young-Il & Song, Byung-Ho & Lee, Uen-Do & Choi, Young-Tai & Song, Jae-Hun, 2011. "Performance evaluation for dual circulating fluidized-bed steam gasifier of biomass using quasi-equilibrium three-stage gasification model," Applied Energy, Elsevier, vol. 88(12), pages 5208-5220.
- Zhang, Ziyin & Pang, Shusheng, 2019. "Experimental investigation of tar formation and producer gas composition in biomass steam gasification in a 100 kW dual fluidised bed gasifier," Renewable Energy, Elsevier, vol. 132(C), pages 416-424.
- Shen, Ye & Li, Xian & Yao, Zhiyi & Cui, Xiaoqiang & Wang, Chi-Hwa, 2019. "CO2 gasification of woody biomass: Experimental study from a lab-scale reactor to a small-scale autothermal gasifier," Energy, Elsevier, vol. 170(C), pages 497-506.
- Bouraoui, Zeineb & Jeguirim, Mejdi & Guizani, Chamseddine & Limousy, Lionel & Dupont, Capucine & Gadiou, Roger, 2015. "Thermogravimetric study on the influence of structural, textural and chemical properties of biomass chars on CO2 gasification reactivity," Energy, Elsevier, vol. 88(C), pages 703-710.
- Nipattummakul, Nimit & Ahmed, Islam & Kerdsuwan, Somrat & Gupta, Ashwani K., 2010. "High temperature steam gasification of wastewater sludge," Applied Energy, Elsevier, vol. 87(12), pages 3729-3734, December.
- Yao, Zhiyi & You, Siming & Ge, Tianshu & Wang, Chi-Hwa, 2018. "Biomass gasification for syngas and biochar co-production: Energy application and economic evaluation," Applied Energy, Elsevier, vol. 209(C), pages 43-55.
- Benedetti, Vittoria & Patuzzi, Francesco & Baratieri, Marco, 2018. "Characterization of char from biomass gasification and its similarities with activated carbon in adsorption applications," Applied Energy, Elsevier, vol. 227(C), pages 92-99.
- Gröbl, Thomas & Walter, Heimo & Haider, Markus, 2012. "Biomass steam gasification for production of SNG – Process design and sensitivity analysis," Applied Energy, Elsevier, vol. 97(C), pages 451-461.
- Bai, Zhang & Liu, Qibin & Gong, Liang & Lei, Jing, 2019. "Investigation of a solar-biomass gasification system with the production of methanol and electricity: Thermodynamic, economic and off-design operation," Applied Energy, Elsevier, vol. 243(C), pages 91-101.
- Kaushal, Priyanka & Tyagi, Rakesh, 2017. "Advanced simulation of biomass gasification in a fluidized bed reactor using ASPEN PLUS," Renewable Energy, Elsevier, vol. 101(C), pages 629-636.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Wang, Shuoshuo & Tuo, Yongxiao & Zhu, Xiaoli & Li, Fulai & Bai, Zhang & Gu, Yucheng, 2024. "Systematic assessment for an integrated hydrogen approach towards the cross-regional application considering solar thermochemical and methanol carrier11The short version of the paper was presented at ," Applied Energy, Elsevier, vol. 370(C).
- Xu, Wenwu & Zhang, Jifu & Wu, Qiming & Wang, Yangyang & Zhao, Wenxuan & Zhu, Zhaoyou & Wang, Yinglong & Cui, Peizhe, 2024. "Energy, exergy and economic (3E) analyses of a novel DME-power polygeneration system with CO2 capture based on biomass gasification," Applied Energy, Elsevier, vol. 374(C).
- Liu, Li & Jiang, Peng & Qian, Hongliang & Mu, Liwen & Lu, Xiaohua & Zhu, Jiahua, 2022. "CO2-negative biomass conversion: An economic route with co-production of green hydrogen and highly porous carbon," Applied Energy, Elsevier, vol. 311(C).
- Wang, Chi-Hwa & Ok, Yong Sik & You, Siming & Wang, Xiaonan, 2020. "The research and development of waste-to-hydrogen technologies and systems," Applied Energy, Elsevier, vol. 268(C).
- Hameed, Zeeshan & Aslam, Muhammad & Khan, Zakir & Maqsood, Khuram & Atabani, A.E. & Ghauri, Moinuddin & Khurram, Muhammad Shahzad & Rehan, Mohammad & Nizami, Abdul-Sattar, 2021. "Gasification of municipal solid waste blends with biomass for energy production and resources recovery: Current status, hybrid technologies and innovative prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 136(C).
- Chen, Feng & Zhang, Yuhao & Zhao, Liang & Gao, Jinsen & Hao, Pengfei & Meng, Qingfei & Xu, Chunming, 2022. "Research on thermodynamic and simulation method of extractive distillation for desulfurization of FCC naphtha," Energy, Elsevier, vol. 254(PA).
- Wang, Jiangjiang & Cui, Zhiheng & Yao, Wenqi & Huo, Shuojie, 2023. "Regulation strategies and thermodynamic analysis of combined cooling, heating, and power system integrated with biomass gasification and solid oxide fuel cell," Energy, Elsevier, vol. 266(C).
- Shen, Xiaobo & Zhang, Zhenwu & Dou, Zengguo & Cong, Beihua & Xiao, Qiuping & Liu, Haifeng, 2022. "Premixed syngas/air combustion in closed ducts with varied aspect ratios and initial pressures," Energy, Elsevier, vol. 254(PC).
- Zhang, Junxia & Zhong, Junfeng & Yang, Li & Wang, Zehua & Chen, Dongrui & Wang, Qiaoli, 2024. "Enhancement effect of semicoke waste heat on energy conservation and hydrogen production from biomass gasification," Renewable Energy, Elsevier, vol. 236(C).
- Qiu, Jianhua & Wu, Fujun & Chen, Fangzhou & Huang, Weijia & Cai, Yezheng & Jiang, Juantao, 2022. "Entire process simulation and thermodynamic analysis of the catalytic gasification for synthetic natural gas from biomass," Energy, Elsevier, vol. 255(C).
- Claudia Patricia Pérez-Rodríguez & Luis Alberto Ríos & Carmen Sofía Duarte González & Andres Montaña & Catalina García-Marroquín, 2022. "Harnessing Residual Biomass as a Renewable Energy Source in Colombia: A Potential Gasification Scenario," Sustainability, MDPI, vol. 14(19), pages 1-14, October.
- Costa, Juliana E.B. & Barbosa, Andrey S. & Melo, Marcus A.F. & Melo, Dulce M.A. & Medeiros, Rodolfo L.B.A. & Braga, Renata M., 2022. "Renewable aromatics through catalytic pyrolysis of coconut fiber (Cocos nucífera Linn.) using low cost HZSM-5," Renewable Energy, Elsevier, vol. 191(C), pages 439-446.
- Kargbo, Hannah O. & Zhang, Jie & Phan, Anh N., 2021. "Optimisation of two-stage biomass gasification for hydrogen production via artificial neural network," Applied Energy, Elsevier, vol. 302(C).
- Lo, Shirleen Lee Yuen & How, Bing Shen & Teng, Sin Yong & Lam, Hon Loong & Lim, Chun Hsion & Rhamdhani, Muhammad Akbar & Sunarso, Jaka, 2021. "Stochastic techno-economic evaluation model for biomass supply chain: A biomass gasification case study with supply chain uncertainties," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
- Minda Loweski Feliz & Lokmane Abdelouahed & Bechara Taouk, 2024. "Comparative and Descriptive Study of Biomass Gasification Simulations Using Aspen Plus," Energies, MDPI, vol. 17(17), pages 1-32, September.
- Fang, Yi & Paul, Manosh C. & Varjani, Sunita & Li, Xian & Park, Young-Kwon & You, Siming, 2021. "Concentrated solar thermochemical gasification of biomass: Principles, applications, and development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Kuo, Yen-Ting & Almansa, G. Aranda & Vreugdenhil, B.J., 2018. "Catalytic aromatization of ethylene in syngas from biomass to enhance economic sustainability of gas production," Applied Energy, Elsevier, vol. 215(C), pages 21-30.
- Al-Muraisy, Saqr A.A. & Chuayboon, Srirat & Soares, Lais Americo & Buijnsters, J.G. & Ismail, Shahrul bin & Abanades, Stéphane & van Lier, Jules B. & Lindeboom, Ralph E.F., 2025. "Carbon capture through solar-driven CO2 gasification of oil palm empty fruit bunch to produce syngas and biochar," Energy, Elsevier, vol. 323(C).
- Setyawan, M. Ismail Bagus & Dafiqurrohman, Hafif & Akbar, Maha Hidayatullah & Surjosatyo, Adi, 2021. "Characterizing a two-stage downdraft biomass gasifier using a representative particle model," Renewable Energy, Elsevier, vol. 173(C), pages 750-767.
- Vakalis, Stergios & Moustakas, Konstantinos, 2019. "Modelling of advanced gasification systems (MAGSY): Simulation and validation for the case of the rising co-current reactor," Applied Energy, Elsevier, vol. 242(C), pages 526-533.
- Gai, Chao & Chen, Mengjun & Liu, Tingting & Peng, Nana & Liu, Zhengang, 2016. "Gasification characteristics of hydrochar and pyrochar derived from sewage sludge," Energy, Elsevier, vol. 113(C), pages 957-965.
- Chaiwatanodom, Paphonwit & Vivanpatarakij, Supawat & Assabumrungrat, Suttichai, 2014. "Thermodynamic analysis of biomass gasification with CO2 recycle for synthesis gas production," Applied Energy, Elsevier, vol. 114(C), pages 10-17.
- Zhu, Deao & Wang, Qinhui & Zhang, Zijun & Xie, Guilin & Luo, zhongyang, 2025. "Kinetics simulation study of biomass partial gasification for producer gas and biochar co-production in the fluidized bed," Energy, Elsevier, vol. 318(C).
- Parthasarathy, Prakash & Narayanan, K. Sheeba, 2014. "Hydrogen production from steam gasification of biomass: Influence of process parameters on hydrogen yield – A review," Renewable Energy, Elsevier, vol. 66(C), pages 570-579.
- Xiang, Yanlei & Cai, Lei & Guan, Yanwen & Liu, Wenbin & Cheng, Zeyang & Liu, Zexi, 2020. "Study on the effect of gasification agents on the integrated system of biomass gasification combined cycle and oxy-fuel combustion," Energy, Elsevier, vol. 206(C).
- Yang, Xiaoxia & Tian, Sicong & Kan, Tao & Zhu, Yuxiang & Xu, Honghui & Strezov, Vladimir & Nelson, Peter & Jiang, Yijiao, 2019. "Sorption-enhanced thermochemical conversion of sewage sludge to syngas with intensified carbon utilization," Applied Energy, Elsevier, vol. 254(C).
- Kong, Ge & Zhang, Xin & Wang, Kejie & Zhou, Linling & Wang, Jin & Zhang, Xuesong & Han, Lujia, 2023. "Tunable H2/CO syngas production from co-gasification integrated with steam reforming of sewage sludge and agricultural biomass: A experimental study," Applied Energy, Elsevier, vol. 342(C).
- Chen, Tianju & Zhang, Juan & Wang, Zhiqi & Zhao, Ruidong & He, Jianjiang & Wu, Jinhu & Qin, Jianguang, 2020. "Oxygen-enriched gasification of lignocellulosic biomass: Syngas analysis, physicochemical characteristics of the carbon-rich material and its utilization as an anode in lithium ion battery," Energy, Elsevier, vol. 212(C).
- Fang, Yi & Paul, Manosh C. & Varjani, Sunita & Li, Xian & Park, Young-Kwon & You, Siming, 2021. "Concentrated solar thermochemical gasification of biomass: Principles, applications, and development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
- Prasad, Lalta & Subbarao, P.M.V. & Subrahmanyam, J.P., 2015. "Experimental investigation on gasification characteristic of high lignin biomass (Pongamia shells)," Renewable Energy, Elsevier, vol. 80(C), pages 415-423.
- Antonio Molino & Vincenzo Larocca & Simeone Chianese & Dino Musmarra, 2018. "Biofuels Production by Biomass Gasification: A Review," Energies, MDPI, vol. 11(4), pages 1-31, March.
- Gupta, Saurabh & Choudhary, Shikhar & Kumar, Suraj & De, Santanu, 2021. "Large eddy simulation of biomass gasification in a bubbling fluidized bed based on the multiphase particle-in-cell method," Renewable Energy, Elsevier, vol. 163(C), pages 1455-1466.
- Jhulimar Castro & Jonathan Leaver & Shusheng Pang, 2022. "Simulation and Techno-Economic Assessment of Hydrogen Production from Biomass Gasification-Based Processes: A Review," Energies, MDPI, vol. 15(22), pages 1-37, November.
- AlNouss, Ahmed & McKay, Gordon & Al-Ansari, Tareq, 2020. "Enhancing waste to hydrogen production through biomass feedstock blending: A techno-economic-environmental evaluation," Applied Energy, Elsevier, vol. 266(C).
- Ratikorn Sornumpol & Dang Saebea & Amornchai Arpornwichanop & Yaneeporn Patcharavorachot, 2023. "Process Optimization and CO 2 Emission Analysis of Coal/Biomass Gasification Integrated with a Chemical Looping Process," Energies, MDPI, vol. 16(6), pages 1-17, March.
- Li, Shenghui & Sun, Xiaojing & Liu, Linlin & Du, Jian, 2023. "A full process optimization of methanol production integrated with co-generation based on the co-gasification of biomass and coal," Energy, Elsevier, vol. 267(C).
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:261:y:2020:i:c:s0306261919320379. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.