IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v227y2018icp92-99.html
   My bibliography  Save this article

Characterization of char from biomass gasification and its similarities with activated carbon in adsorption applications

Author

Listed:
  • Benedetti, Vittoria
  • Patuzzi, Francesco
  • Baratieri, Marco

Abstract

This study points out the similarities between gasification char and activated carbon and reviews its successful applications in the field of adsorption. Since only few data on char from biomass gasification are available in the literature, chars collected from six different commercial gasification plants have been characterized by different techniques. Similarities and differences of the six samples have been pointed out and eventually, three samples have been selected as the most suitable for further applications of char asactivated carbon. Characterization results have been compared with data available in the literature and finally, effective examples of char applications asadsorbent have been reported.

Suggested Citation

  • Benedetti, Vittoria & Patuzzi, Francesco & Baratieri, Marco, 2018. "Characterization of char from biomass gasification and its similarities with activated carbon in adsorption applications," Applied Energy, Elsevier, vol. 227(C), pages 92-99.
  • Handle: RePEc:eee:appene:v:227:y:2018:i:c:p:92-99
    DOI: 10.1016/j.apenergy.2017.08.076
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261917310942
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2017.08.076?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Im-orb, Karittha & Arpornwichanop, Amornchai, 2016. "Techno-environmental analysis of the biomass gasification and Fischer-Tropsch integrated process for the co-production of bio-fuel and power," Energy, Elsevier, vol. 112(C), pages 121-132.
    2. Kim, Young-Doo & Yang, Chang-Won & Kim, Beom-Jong & Moon, Ji-Hong & Jeong, Jae-Yong & Jeong, Soo-Hwa & Lee, See-Hoon & Kim, Jae-Ho & Seo, Myung-Won & Lee, Sang-Bong & Kim, Jae-Kon & Lee, Uen-Do, 2016. "Fischer–tropsch diesel production and evaluation as alternative automotive fuel in pilot-scale integrated biomass-to-liquid process," Applied Energy, Elsevier, vol. 180(C), pages 301-312.
    3. Ayotamuno, M.J. & Kogbara, R.B. & Ogaji, S.O.T. & Probert, S.D., 2006. "Petroleum contaminated ground-water: Remediation using activated carbon," Applied Energy, Elsevier, vol. 83(11), pages 1258-1264, November.
    4. Kezhen Qian & Ajay Kumar & Krushna Patil & Danielle Bellmer & Donghai Wang & Wenqiao Yuan & Raymond L. Huhnke, 2013. "Effects of Biomass Feedstocks and Gasification Conditions on the Physiochemical Properties of Char," Energies, MDPI, vol. 6(8), pages 1-15, August.
    5. Khadiran, Tumirah & Hussein, Mohd Zobir & Zainal, Zulkarnain & Rusli, Rafeadah, 2015. "Activated carbon derived from peat soil as a framework for the preparation of shape-stabilized phase change material," Energy, Elsevier, vol. 82(C), pages 468-478.
    6. Lundgren, J. & Ekbom, T. & Hulteberg, C. & Larsson, M. & Grip, C.-E. & Nilsson, L. & Tunå, P., 2013. "Methanol production from steel-work off-gases and biomass based synthesis gas," Applied Energy, Elsevier, vol. 112(C), pages 431-439.
    7. Rashidi, Nor Adilla & Yusup, Suzana & Hameed, Bassim H., 2013. "Kinetic studies on carbon dioxide capture using lignocellulosic based activated carbon," Energy, Elsevier, vol. 61(C), pages 440-446.
    8. Ioannidou, O. & Zabaniotou, A., 2007. "Agricultural residues as precursors for activated carbon production--A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(9), pages 1966-2005, December.
    9. Patuzzi, Francesco & Prando, Dario & Vakalis, Stergios & Rizzo, Andrea Maria & Chiaramonti, David & Tirler, Werner & Mimmo, Tanja & Gasparella, Andrea & Baratieri, Marco, 2016. "Small-scale biomass gasification CHP systems: Comparative performance assessment and monitoring experiences in South Tyrol (Italy)," Energy, Elsevier, vol. 112(C), pages 285-293.
    10. Byamba-Ochir, Narandalai & Shim, Wang Geun & Balathanigaimani, M.S. & Moon, Hee, 2017. "High density Mongolian anthracite based porous carbon monoliths for methane storage by adsorption," Applied Energy, Elsevier, vol. 190(C), pages 257-265.
    11. Lee, Jechan & Yang, Xiao & Cho, Seong-Heon & Kim, Jae-Kon & Lee, Sang Soo & Tsang, Daniel C.W. & Ok, Yong Sik & Kwon, Eilhann E., 2017. "Pyrolysis process of agricultural waste using CO2 for waste management, energy recovery, and biochar fabrication," Applied Energy, Elsevier, vol. 185(P1), pages 214-222.
    12. Ayotamuno, M.J. & Okparanma, R.N. & Ogaji, S.O.T. & Probert, S.D., 2007. "Chromium removal from flocculation effluent of liquid-phase oil-based drill-cuttings using powdered activated carbon," Applied Energy, Elsevier, vol. 84(10), pages 1002-1011, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Prasertcharoensuk, Phuet & Bull, Steve J. & Phan, Anh N., 2019. "Gasification of waste biomass for hydrogen production: Effects of pyrolysis parameters," Renewable Energy, Elsevier, vol. 143(C), pages 112-120.
    2. Hernández, J.J. & Saffe, A. & Collado, R. & Monedero, E., 2020. "Recirculation of char from biomass gasification: Effects on gasifier performance and end-char properties," Renewable Energy, Elsevier, vol. 147(P1), pages 806-813.
    3. Xiang, Yanlei & Cai, Lei & Guan, Yanwen & Liu, Wenbin & Cheng, Zeyang & Liu, Zexi, 2020. "Study on the effect of gasification agents on the integrated system of biomass gasification combined cycle and oxy-fuel combustion," Energy, Elsevier, vol. 206(C).
    4. Benedetti, Vittoria & Ail, Snehesh Shivananda & Patuzzi, Francesco & Cristofori, Davide & Rauch, Reinhard & Baratieri, Marco, 2020. "Investigating the feasibility of valorizing residual char from biomass gasification as catalyst support in Fischer-Tropsch synthesis," Renewable Energy, Elsevier, vol. 147(P1), pages 884-894.
    5. Cristina Moliner & Filippo Marchelli & Elisabetta Arato, 2020. "Current Status of Energy Production from Solid Biomass in North-West Italy," Energies, MDPI, vol. 13(17), pages 1-29, August.
    6. Kwadwo Mensah-Darkwa & Camila Zequine & Pawan K. Kahol & Ram K. Gupta, 2019. "Supercapacitor Energy Storage Device Using Biowastes: A Sustainable Approach to Green Energy," Sustainability, MDPI, vol. 11(2), pages 1-22, January.
    7. Patuzzi, Francesco & Basso, Daniele & Vakalis, Stergios & Antolini, Daniele & Piazzi, Stefano & Benedetti, Vittoria & Cordioli, Eleonora & Baratieri, Marco, 2021. "State-of-the-art of small-scale biomass gasification systems: An extensive and unique monitoring review," Energy, Elsevier, vol. 223(C).
    8. Sitka, Andrzej & Szulc, Piotr & Smykowski, Daniel & Jodkowski, Wiesław, 2021. "Application of poultry manure as an energy resource by its gasification in a prototype rotary counterflow gasifier," Renewable Energy, Elsevier, vol. 175(C), pages 422-429.
    9. Montagnaro, Fabio & Zaccariello, Lucio, 2023. "Performance assessment of a demonstration-scale biomass gasification power plant using material and energy flow analyses," Energy, Elsevier, vol. 284(C).
    10. Jeong, Yong-Seong & Park, Ki-Bum & Kim, Joo-Sik, 2020. "Hydrogen production from steam gasification of polyethylene using a two-stage gasifier and active carbon," Applied Energy, Elsevier, vol. 262(C).
    11. Bao Wang & Yujie Li & Jianan Zhou & Yi Wang & Xun Tao & Xiang Zhang & Weiming Song, 2021. "Thermogravimetric and Kinetic Analysis of High-Temperature Thermal Conversion of Pine Wood Sawdust under CO 2 /Ar," Energies, MDPI, vol. 14(17), pages 1-16, August.
    12. Vakalis, Stergios & Moustakas, Konstantinos, 2019. "Modelling of advanced gasification systems (MAGSY): Simulation and validation for the case of the rising co-current reactor," Applied Energy, Elsevier, vol. 242(C), pages 526-533.
    13. Ali Abdelaal & Vittoria Benedetti & Audrey Villot & Francesco Patuzzi & Claire Gerente & Marco Baratieri, 2023. "Innovative Pathways for the Valorization of Biomass Gasification Char: A Systematic Review," Energies, MDPI, vol. 16(10), pages 1-24, May.
    14. Eleonora Cordioli & Francesco Patuzzi & Marco Baratieri, 2019. "Thermal and Catalytic Cracking of Toluene Using Char from Commercial Gasification Systems," Energies, MDPI, vol. 12(19), pages 1-16, October.
    15. Małgorzata Sieradzka & Agata Mlonka-Mędrala & Izabela Kalemba-Rec & Markus Reinmöller & Felix Küster & Wojciech Kalawa & Aneta Magdziarz, 2022. "Evaluation of Physical and Chemical Properties of Residue from Gasification of Biomass Wastes," Energies, MDPI, vol. 15(10), pages 1-19, May.
    16. AlNouss, Ahmed & Parthasarathy, Prakash & Shahbaz, Muhammad & Al-Ansari, Tareq & Mackey, Hamish & McKay, Gordon, 2020. "Techno-economic and sensitivity analysis of coconut coir pith-biomass gasification using ASPEN PLUS," Applied Energy, Elsevier, vol. 261(C).
    17. Junaid Ahmad & Stergios Vakalis & Francesco Patuzzi & Marco Baratieri, 2021. "Effect of process conditions on the surface properties of biomass chars produced by means of pyrolysis and CO2 gasification," Energy & Environment, , vol. 32(8), pages 1378-1396, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qian, Kezhen & Kumar, Ajay & Zhang, Hailin & Bellmer, Danielle & Huhnke, Raymond, 2015. "Recent advances in utilization of biochar," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 1055-1064.
    2. Bao Wang & Yujie Li & Jianan Zhou & Yi Wang & Xun Tao & Xiang Zhang & Weiming Song, 2021. "Thermogravimetric and Kinetic Analysis of High-Temperature Thermal Conversion of Pine Wood Sawdust under CO 2 /Ar," Energies, MDPI, vol. 14(17), pages 1-16, August.
    3. Suopajärvi, Hannu & Umeki, Kentaro & Mousa, Elsayed & Hedayati, Ali & Romar, Henrik & Kemppainen, Antti & Wang, Chuan & Phounglamcheik, Aekjuthon & Tuomikoski, Sari & Norberg, Nicklas & Andefors, Alf , 2018. "Use of biomass in integrated steelmaking – Status quo, future needs and comparison to other low-CO2 steel production technologies," Applied Energy, Elsevier, vol. 213(C), pages 384-407.
    4. Ali Mubarak Al-Qahtani, 2023. "A Comprehensive Review in Microwave Pyrolysis of Biomass, Syngas Production and Utilisation," Energies, MDPI, vol. 16(19), pages 1-16, September.
    5. Shin, Sunkyu & Lee, Jeong-Keun & Lee, In-Beum, 2020. "Development and techno-economic study of methanol production from coke-oven gas blended with Linz Donawitz gas," Energy, Elsevier, vol. 200(C).
    6. Antoniou, N. & Stavropoulos, G. & Zabaniotou, A., 2014. "Activation of end of life tyres pyrolytic char for enhancing viability of pyrolysis – Critical review, analysis and recommendations for a hybrid dual system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 1053-1073.
    7. Lohan, Shiv Kumar & Jat, H.S. & Yadav, Arvind Kumar & Sidhu, H.S. & Jat, M.L. & Choudhary, Madhu & Peter, Jyotsna Kiran & Sharma, P.C., 2018. "Burning issues of paddy residue management in north-west states of India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 693-706.
    8. Gao, Pin & Zhou, Yiyuan & Meng, Fang & Zhang, Yihui & Liu, Zhenhong & Zhang, Wenqi & Xue, Gang, 2016. "Preparation and characterization of hydrochar from waste eucalyptus bark by hydrothermal carbonization," Energy, Elsevier, vol. 97(C), pages 238-245.
    9. Kumar N, Sasi & Grekov, Denys & Pré, Pascaline & Alappat, Babu J., 2020. "Microwave mode of heating in the preparation of porous carbon materials for adsorption and energy storage applications – An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 124(C).
    10. Zhang, Hanfei & Wang, Ligang & Pérez-Fortes, Mar & Van herle, Jan & Maréchal, François & Desideri, Umberto, 2020. "Techno-economic optimization of biomass-to-methanol with solid-oxide electrolyzer," Applied Energy, Elsevier, vol. 258(C).
    11. Yoon, Kwangsuk & Lee, Sang Soo & Ok, Yong Sik & Kwon, Eilhann E. & Song, Hocheol, 2019. "Enhancement of syngas for H2 production via catalytic pyrolysis of orange peel using CO2 and bauxite residue," Applied Energy, Elsevier, vol. 254(C).
    12. Patuzzi, Francesco & Basso, Daniele & Vakalis, Stergios & Antolini, Daniele & Piazzi, Stefano & Benedetti, Vittoria & Cordioli, Eleonora & Baratieri, Marco, 2021. "State-of-the-art of small-scale biomass gasification systems: An extensive and unique monitoring review," Energy, Elsevier, vol. 223(C).
    13. Zetterholm, J. & Ji, X. & Sundelin, B. & Martin, P.M. & Wang, C., 2017. "Dynamic modelling for the hot blast stove," Applied Energy, Elsevier, vol. 185(P2), pages 2142-2150.
    14. Kim, Dongin & Han, Jeehoon, 2020. "Techno-economic and climate impact analysis of carbon utilization process for methanol production from blast furnace gas over Cu/ZnO/Al2O3 catalyst," Energy, Elsevier, vol. 198(C).
    15. Arthur M. James R. & Wenqiao Yuan & Michael D. Boyette, 2016. "The Effect of Biomass Physical Properties on Top-Lit Updraft Gasification of Woodchips," Energies, MDPI, vol. 9(4), pages 1-13, April.
    16. Khushbu Kumari & Raushan Kumar & Nirmali Bordoloi & Tatiana Minkina & Chetan Keswani & Kuldeep Bauddh, 2023. "Unravelling the Recent Developments in the Production Technology and Efficient Applications of Biochar for Agro-Ecosystems," Agriculture, MDPI, vol. 13(3), pages 1-26, February.
    17. Makarfi Isa, Yusuf & Ganda, Elvis Tinashe, 2018. "Bio-oil as a potential source of petroleum range fuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 69-75.
    18. Qian, Tingting & Li, Jinhong & Min, Xin & Deng, Yong & Guan, Weimin & Ning, Lei, 2016. "Radial-like mesoporous silica sphere: A promising new candidate of supporting material for storage of low-, middle-, and high-temperature heat," Energy, Elsevier, vol. 112(C), pages 1074-1083.
    19. Xing Yang & Hailong Wang & Peter James Strong & Song Xu & Shujuan Liu & Kouping Lu & Kuichuan Sheng & Jia Guo & Lei Che & Lizhi He & Yong Sik Ok & Guodong Yuan & Ying Shen & Xin Chen, 2017. "Thermal Properties of Biochars Derived from Waste Biomass Generated by Agricultural and Forestry Sectors," Energies, MDPI, vol. 10(4), pages 1-12, April.
    20. Struhs, Ethan & Mirkouei, Amin & You, Yaqi & Mohajeri, Amir, 2020. "Techno-economic and environmental assessments for nutrient-rich biochar production from cattle manure: A case study in Idaho, USA," Applied Energy, Elsevier, vol. 279(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:227:y:2018:i:c:p:92-99. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.