IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v323y2025ics0360544225014471.html
   My bibliography  Save this article

Carbon capture through solar-driven CO2 gasification of oil palm empty fruit bunch to produce syngas and biochar

Author

Listed:
  • Al-Muraisy, Saqr A.A.
  • Chuayboon, Srirat
  • Soares, Lais Americo
  • Buijnsters, J.G.
  • Ismail, Shahrul bin
  • Abanades, Stéphane
  • van Lier, Jules B.
  • Lindeboom, Ralph E.F.

Abstract

Oil palm empty fruit bunch (OPEFB) is an abundant organic waste in Malaysia that is often disposed of through field burning. A previous study has shown that solar-driven steam gasification of OPEFB can produce hydrogen-rich syngas with an energy upgrade factor of 1.2 and a carbon conversion efficiency of 95.1 %. Beyond its potential as a biofuel, OPEFB can also act as a carbon sink, capturing photosynthetically stored carbon. This study explores the potential of amplifying OPEFB's negative carbon emissions through solar-driven gasification, using CO2 as the gasifying agent. In this work, a Central Composite Design (CCD) approach was employed to assess the influence of temperature (1100–1300 °C) and CO2/OPEFB molar ratio (1.6–3.0) on H2/CO molar ratio and energy upgrade factor, with a constant OPEFB flow rate of 1.8 g/min. The results demonstrated that at an energy upgrade factor of 1.4, 94.9 % of the total carbon was converted into syngas with a H2/CO molar ratio of 0.3. The maximum observed net carbon capture yield of 0.4 g C/g OPEFB was achieved at 1300 °C and a CO2/OPEFB molar ratio of 3.0. The remaining carbon (94.4–95.7 wt %) was converted into biochar with low heavy metal content, which has potential as a soil enhancer.

Suggested Citation

  • Al-Muraisy, Saqr A.A. & Chuayboon, Srirat & Soares, Lais Americo & Buijnsters, J.G. & Ismail, Shahrul bin & Abanades, Stéphane & van Lier, Jules B. & Lindeboom, Ralph E.F., 2025. "Carbon capture through solar-driven CO2 gasification of oil palm empty fruit bunch to produce syngas and biochar," Energy, Elsevier, vol. 323(C).
  • Handle: RePEc:eee:energy:v:323:y:2025:i:c:s0360544225014471
    DOI: 10.1016/j.energy.2025.135805
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544225014471
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2025.135805?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Saadabadi, S. Ali & Thallam Thattai, Aditya & Fan, Liyuan & Lindeboom, Ralph E.F. & Spanjers, Henri & Aravind, P.V., 2019. "Solid Oxide Fuel Cells fuelled with biogas: Potential and constraints," Renewable Energy, Elsevier, vol. 134(C), pages 194-214.
    2. Li, Lanyu & Yao, Zhiyi & You, Siming & Wang, Chi-Hwa & Chong, Clive & Wang, Xiaonan, 2019. "Optimal design of negative emission hybrid renewable energy systems with biochar production," Applied Energy, Elsevier, vol. 243(C), pages 233-249.
    3. Chuayboon, Srirat & Abanades, Stéphane, 2023. "Carbon-neutral synfuel production via continuous solar H2O and CO2 gasification of oil palm empty fruit bunch," Energy, Elsevier, vol. 281(C).
    4. Liew, Zhen Kang & Chan, Yi Jing & Ho, Zheng Theng & Yip, Yew Hong & Teng, Ming Chern & Ameer Abbas bin, Ameer Illham Tuah & Chong, Siewhui & Show, Pau Loke & Chew, Chien Lye, 2021. "Biogas production enhancement by co-digestion of empty fruit bunch (EFB) with palm oil mill effluent (POME): Performance and kinetic evaluation," Renewable Energy, Elsevier, vol. 179(C), pages 766-777.
    5. Singh, P. & Déparrois, N. & Burra, K.G. & Bhattacharya, S. & Gupta, A.K., 2019. "Energy recovery from cross-linked polyethylene wastes using pyrolysis and CO2 assisted gasification," Applied Energy, Elsevier, vol. 254(C).
    6. Yuan Wang & Youzhen Yang, 2022. "Research on Greenhouse Gas Emissions and Economic Assessment of Biomass Gasification Power Generation Technology in China Based on LCA Method," Sustainability, MDPI, vol. 14(24), pages 1-11, December.
    7. Shen, Ye & Li, Xian & Yao, Zhiyi & Cui, Xiaoqiang & Wang, Chi-Hwa, 2019. "CO2 gasification of woody biomass: Experimental study from a lab-scale reactor to a small-scale autothermal gasifier," Energy, Elsevier, vol. 170(C), pages 497-506.
    8. Rozzeta Dolah & Rohit Karnik & Halimaton Hamdan, 2021. "A Comprehensive Review on Biofuels from Oil Palm Empty Bunch (EFB): Current Status, Potential, Barriers and Way Forward," Sustainability, MDPI, vol. 13(18), pages 1-29, September.
    9. Derman, Eryati & Abdulla, Rahmath & Marbawi, Hartinie & Sabullah, Mohd Khalizan, 2018. "Oil palm empty fruit bunches as a promising feedstock for bioethanol production in Malaysia," Renewable Energy, Elsevier, vol. 129(PA), pages 285-298.
    10. Safarian, Sahar & Unnþórsson, Rúnar & Richter, Christiaan, 2019. "A review of biomass gasification modelling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 378-391.
    11. Chuayboon, Srirat & Abanades, Stéphane & Rodat, Sylvain, 2019. "Insights into the influence of biomass feedstock type, particle size and feeding rate on thermochemical performances of a continuous solar gasification reactor," Renewable Energy, Elsevier, vol. 130(C), pages 360-370.
    12. Benedetti, Vittoria & Patuzzi, Francesco & Baratieri, Marco, 2018. "Characterization of char from biomass gasification and its similarities with activated carbon in adsorption applications," Applied Energy, Elsevier, vol. 227(C), pages 92-99.
    13. Inayat, Abrar & Inayat, Muddasser & Shahbaz, Muhammad & Sulaiman, Shaharin A. & Raza, Mohsin & Yusup, Suzana, 2020. "Parametric analysis and optimization for the catalytic air gasification of palm kernel shell using coal bottom ash as catalyst," Renewable Energy, Elsevier, vol. 145(C), pages 671-681.
    14. Ahmed Mosa & Mostafa M. Mansour & Enas Soliman & Ayman El-Ghamry & Mohamed El Alfy & Ahmed M. El Kenawy, 2023. "Biochar as a Soil Amendment for Restraining Greenhouse Gases Emission and Improving Soil Carbon Sink: Current Situation and Ways Forward," Sustainability, MDPI, vol. 15(2), pages 1-26, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Guangyao & Yu, Hao & Ji, Dongxu & Zhu, Chuanyong & Thu, Kyaw & Miyazaki, Takahiko, 2025. "Pine cone-based activated carbon via dual physical activation for efficient carbon dioxide capture: Experimental and molecular simulation studies," Energy, Elsevier, vol. 328(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. AlNouss, Ahmed & Parthasarathy, Prakash & Shahbaz, Muhammad & Al-Ansari, Tareq & Mackey, Hamish & McKay, Gordon, 2020. "Techno-economic and sensitivity analysis of coconut coir pith-biomass gasification using ASPEN PLUS," Applied Energy, Elsevier, vol. 261(C).
    2. Donghoon Shin & Akhil Francis & Purushothaman Vellayani Aravind & Theo Woudstra & Wiebren de Jong & Dirk Roekaerts, 2022. "Numerical Evaluation of Biochar Production Performance of Downdraft Gasifier by Thermodynamic Model," Energies, MDPI, vol. 15(20), pages 1-18, October.
    3. Xiang, Yanlei & Cai, Lei & Guan, Yanwen & Liu, Wenbin & Cheng, Zeyang & Liu, Zexi, 2020. "Study on the effect of gasification agents on the integrated system of biomass gasification combined cycle and oxy-fuel combustion," Energy, Elsevier, vol. 206(C).
    4. Liu, Jingyuan & Zhou, Jianzhao & Ren, Jingzheng, 2025. "Recent advances of energetic valorization technologies for waste tires: A systematic review of thermochemical and integrated processes, challenges, and future directions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 218(C).
    5. Su, Guangcan & Mohd Zulkifli, Nurin Wahidah & Ong, Hwai Chyuan & Ibrahim, Shaliza & Bu, Quan & Zhu, Ruonan, 2022. "Pyrolysis of oil palm wastes for bioenergy in Malaysia: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 164(C).
    6. Fang, Yi & Paul, Manosh C. & Varjani, Sunita & Li, Xian & Park, Young-Kwon & You, Siming, 2021. "Concentrated solar thermochemical gasification of biomass: Principles, applications, and development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    7. Zhuang, Rui & Wang, Xiaonan & Guo, Miao & Zhao, Yingru & El-Farra, Nael H. & Palazoglu, Ahmet, 2020. "Waste-to-hydrogen: Recycling HCl to produce H2 and Cl2," Applied Energy, Elsevier, vol. 259(C).
    8. Bhattarai, Ashish & Kafle, Sagar & Sakhakarmy, Manish & Moogi, Surendar & Adhikari, Sushil, 2024. "Fluidized-bed gasification kinetics model development using genetic algorithm for biomass, coal, municipal plastic waste, and their blends," Energy, Elsevier, vol. 313(C).
    9. Ratikorn Sornumpol & Dang Saebea & Amornchai Arpornwichanop & Yaneeporn Patcharavorachot, 2023. "Process Optimization and CO 2 Emission Analysis of Coal/Biomass Gasification Integrated with a Chemical Looping Process," Energies, MDPI, vol. 16(6), pages 1-17, March.
    10. Buentello-Montoya, D.A. & Duarte-Ruiz, C.A. & Maldonado-Escalante, J.F., 2023. "Co-gasification of waste PET, PP and biomass for energy recovery: A thermodynamic model to assess the produced syngas quality," Energy, Elsevier, vol. 266(C).
    11. Sunil Prasad Lohani & Renisha Acharya & Poushan Shrestha & Sundar Shrestha & K. C. Manisha & Prajal Pradhan, 2024. "Sustainable biogas production potential in Nepal using waste biomass: A spatial analysis," Sustainable Development, John Wiley & Sons, Ltd., vol. 32(5), pages 4770-4781, October.
    12. He, Yahui & Li, Xiaofu & Meng, Li & Zhang, Wenqi & Wang, Yinfeng & Wang, Lei & Bi, Xiaotao & Zhu, Yuezhao, 2024. "Experimental investigation on high-temperature co-gasification and melting behavior of petrochemical sludge and bituminous coal in CO2 atmosphere," Energy, Elsevier, vol. 303(C).
    13. Patuzzi, Francesco & Basso, Daniele & Vakalis, Stergios & Antolini, Daniele & Piazzi, Stefano & Benedetti, Vittoria & Cordioli, Eleonora & Baratieri, Marco, 2021. "State-of-the-art of small-scale biomass gasification systems: An extensive and unique monitoring review," Energy, Elsevier, vol. 223(C).
    14. Luciana Rossi & Sara Frazzini & Matteo Santoru & Benedetta Canala & Irene Ferri & Alessandra Moscatelli & Elisabetta Onelli & Matteo Dell’Anno & Salvatore Pilu & Serena Reggi, 2025. "Exploiting Chestnut Biochar as a Functional and Circular Ingredient in Weaned Piglet Diets," Agriculture, MDPI, vol. 15(10), pages 1-19, May.
    15. Sitka, Andrzej & Szulc, Piotr & Smykowski, Daniel & Jodkowski, Wiesław, 2021. "Application of poultry manure as an energy resource by its gasification in a prototype rotary counterflow gasifier," Renewable Energy, Elsevier, vol. 175(C), pages 422-429.
    16. Luis Ángel Castillo-Gracia & Néstor Andrés Urbina-Suarez & Ángel Darío González-Delgado, 2024. "Bibliometric and Co-Occurrence Study of the Production of Bioethanol and Hydrogen from African Palm Rachis (2003–2023)," Sustainability, MDPI, vol. 17(1), pages 1-33, December.
    17. Ding, Xiaoyi & Lv, Xiaojing & Weng, Yiwu, 2019. "Coupling effect of operating parameters on performance of a biogas-fueled solid oxide fuel cell/gas turbine hybrid system," Applied Energy, Elsevier, vol. 254(C).
    18. Chuayboon, Srirat & Abanades, Stéphane, 2024. "Green iron and syngas production via continuous solar-driven agricultural waste biomass gasification combined with iron(III) oxide reduction," Energy, Elsevier, vol. 306(C).
    19. Santhappan, Joseph Sekhar & Boddu, Muralikrishna & Gopinath, Arun S. & Mathimani, Thangavel, 2024. "Analysis of 27 supervised machine learning models for the co-gasification assessment of peanut shell and spent tea residue in an open-core downdraft gasifier," Renewable Energy, Elsevier, vol. 235(C).
    20. Vakalis, Stergios & Moustakas, Konstantinos, 2019. "Modelling of advanced gasification systems (MAGSY): Simulation and validation for the case of the rising co-current reactor," Applied Energy, Elsevier, vol. 242(C), pages 526-533.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:323:y:2025:i:c:s0360544225014471. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.