IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i24p16729-d1002484.html
   My bibliography  Save this article

Research on Greenhouse Gas Emissions and Economic Assessment of Biomass Gasification Power Generation Technology in China Based on LCA Method

Author

Listed:
  • Yuan Wang

    (School of Finance, Shanxi University of Finance and Economics, Taiyuan 030006, China)

  • Youzhen Yang

    (School of Finance, Shanxi University of Finance and Economics, Taiyuan 030006, China)

Abstract

China is rich in biomass resources, taking straw as an example, the amount of straw in China is 735 million tons in 2021. However, at the level of resource use, biomass resources have the practical difficulties of being widely distributed and difficult to achieve large-scale application. By collecting large amounts of biomass and generating electricity using gasification technology, we can effectively increase the resource utilization of biomass and also improve China’s energy security. By using a life cycle assessment (LCA) approach, this paper conducted a life cycle assessment with local biomass gasification power generation data in China and found that the LCA greenhouse gas emissions of biomass gasification power generation technology is 8.68 t CO 2 e/10 4 kWh and the LCA cost is 674 USD/10 4 kWh. Biomass gasification power generation technology has a 14.7% reduction in whole life carbon emissions compared to coal power generation technology. This paper finds that gas-fired power generation processes result in the largest carbon emissions. In terms of economics, this paper finds that natural gas brings the most additional costs as an external heat source.

Suggested Citation

  • Yuan Wang & Youzhen Yang, 2022. "Research on Greenhouse Gas Emissions and Economic Assessment of Biomass Gasification Power Generation Technology in China Based on LCA Method," Sustainability, MDPI, vol. 14(24), pages 1-11, December.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:24:p:16729-:d:1002484
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/24/16729/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/24/16729/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sebastián, F. & Royo, J. & Gómez, M., 2011. "Cofiring versus biomass-fired power plants: GHG (Greenhouse Gases) emissions savings comparison by means of LCA (Life Cycle Assessment) methodology," Energy, Elsevier, vol. 36(4), pages 2029-2037.
    2. Dias, Goretty M. & Ayer, Nathan W. & Kariyapperuma, Kumudinie & Thevathasan, Naresh & Gordon, Andrew & Sidders, Derek & Johannesson, Gudmundur H., 2017. "Life cycle assessment of thermal energy production from short-rotation willow biomass in Southern Ontario, Canada," Applied Energy, Elsevier, vol. 204(C), pages 343-352.
    3. Hao, Han & Liu, Zongwei & Zhao, Fuquan & Li, Weiqi & Hang, Wen, 2015. "Scenario analysis of energy consumption and greenhouse gas emissions from China's passenger vehicles," Energy, Elsevier, vol. 91(C), pages 151-159.
    4. Chen, Xiaoguang, 2016. "Economic potential of biomass supply from crop residues in China," Applied Energy, Elsevier, vol. 166(C), pages 141-149.
    5. Tonini, Davide & Astrup, Thomas, 2012. "LCA of biomass-based energy systems: A case study for Denmark," Applied Energy, Elsevier, vol. 99(C), pages 234-246.
    6. Shafie, S.M. & Masjuki, H.H. & Mahlia, T.M.I., 2014. "Life cycle assessment of rice straw-based power generation in Malaysia," Energy, Elsevier, vol. 70(C), pages 401-410.
    7. Guoyu Ren & Johnny C. L. Chan & Hisayuki Kubota & Zhongshi Zhang & Jinbao Li & Yongxiang Zhang & Yingxian Zhang & Yuda Yang & Yuyu Ren & Xiubao Sun & Yun Su & Yuhui Liu & Zhixin Hao & Xiaoying Xue & Y, 2021. "Historical and recent change in extreme climate over East Asia," Climatic Change, Springer, vol. 168(3), pages 1-19, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Al-Muraisy, Saqr A.A. & Chuayboon, Srirat & Soares, Lais Americo & Buijnsters, J.G. & Ismail, Shahrul bin & Abanades, Stéphane & van Lier, Jules B. & Lindeboom, Ralph E.F., 2025. "Carbon capture through solar-driven CO2 gasification of oil palm empty fruit bunch to produce syngas and biochar," Energy, Elsevier, vol. 323(C).
    2. Ahmad Al-Kuwari & Murat Kucukvar & Nuri C. Onat, 2024. "Uncovering the role of sustainable value chain and life cycle management toward sustainable operations in electricity production technologies," Operations Management Research, Springer, vol. 17(4), pages 1360-1379, December.
    3. Díaz-Trujillo, Luis Alberto & González-Avilés, Mauricio & Fuentes-Cortés, Luis Fabián, 2024. "Soft-clustering for conflict management around the water-energy-carbon nexus and energy security," Applied Energy, Elsevier, vol. 360(C).
    4. Marco Mancini & Andreas Schwabauer, 2023. "On the Thermal Stability of a Counter-Current Fixed-Bed Gasifier," Energies, MDPI, vol. 16(9), pages 1-36, April.
    5. Minwei Liu & Jincan Zeng & Guori Huang & Xi Liu & Gengsheng He & Shangheng Yao & Nan Shang & Lixing Zheng & Peng Wang, 2024. "Assessing Energy Consumption, Carbon Emissions, and Costs in Biomass-to-Gas Processes: A Life-Cycle Assessment Approach," Sustainability, MDPI, vol. 16(12), pages 1-13, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. He, Jiaxin & Liu, Ying & Lin, Boqiang, 2018. "Should China support the development of biomass power generation?," Energy, Elsevier, vol. 163(C), pages 416-425.
    2. Akhil Kadiyala & Raghava Kommalapati & Ziaul Huque, 2016. "Evaluation of the Life Cycle Greenhouse Gas Emissions from Different Biomass Feedstock Electricity Generation Systems," Sustainability, MDPI, vol. 8(11), pages 1-12, November.
    3. Tu, Yaojie & Zhou, Anqi & Xu, Mingchen & Yang, Wenming & Siah, Keng Boon & Subbaiah, Prabakaran, 2018. "NOX reduction in a 40 t/h biomass fired grate boiler using internal flue gas recirculation technology," Applied Energy, Elsevier, vol. 220(C), pages 962-973.
    4. Turconi, Roberto & Boldrin, Alessio & Astrup, Thomas, 2013. "Life cycle assessment (LCA) of electricity generation technologies: Overview, comparability and limitations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 555-565.
    5. Pelletier, Chloé & Rogaume, Yann & Dieckhoff, Léa & Bardeau, Guillaume & Pons, Marie-Noëlle & Dufour, Anthony, 2019. "Effect of combustion technology and biogenic CO2 impact factor on global warming potential of wood-to-heat chains," Applied Energy, Elsevier, vol. 235(C), pages 1381-1388.
    6. Shafie, S.M. & Mahlia, T.M.I. & Masjuki, H.H., 2013. "Life cycle assessment of rice straw co-firing with coal power generation in Malaysia," Energy, Elsevier, vol. 57(C), pages 284-294.
    7. Atsonios, Konstantinos & Kougioumtzis, Michael-Alexander & D. Panopoulos, Kyriakos & Kakaras, Emmanuel, 2015. "Alternative thermochemical routes for aviation biofuels via alcohols synthesis: Process modeling, techno-economic assessment and comparison," Applied Energy, Elsevier, vol. 138(C), pages 346-366.
    8. Yang Yang & Ji-Qin Ni & Weiqing Bao & Lei Zhao & Guang Hui Xie, 2019. "Potential Reductions in Greenhouse Gas and Fine Particulate Matter Emissions Using Corn Stover for Ethanol Production in China," Energies, MDPI, vol. 12(19), pages 1-14, September.
    9. Yang, Lin & Hou, Huiyun & Lv, Haodong & Wu, Guanqi & Xu, Bang & Li, Yiming, 2025. "Exploring the development path of bioenergy carbon capture and storage for achieving carbon neutrality in China: A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 216(C).
    10. Stachowicz, Paweł & Stolarski, Mariusz J., 2024. "Pellets from mixtures of short rotation coppice with forest-derived biomass: Production costs and energy intensity," Renewable Energy, Elsevier, vol. 225(C).
    11. Zuo, Alec & Hou, Lingling & Huang, Zeying, 2020. "How does farmers' current usage of crop straws influence the willingness-to-accept price to sell?," Energy Economics, Elsevier, vol. 86(C).
    12. Huang, Y. & McIlveen-Wright, D.R. & Rezvani, S. & Huang, M.J. & Wang, Y.D. & Roskilly, A.P. & Hewitt, N.J., 2013. "Comparative techno-economic analysis of biomass fuelled combined heat and power for commercial buildings," Applied Energy, Elsevier, vol. 112(C), pages 518-525.
    13. Malça, João & Coelho, António & Freire, Fausto, 2014. "Environmental life-cycle assessment of rapeseed-based biodiesel: Alternative cultivation systems and locations," Applied Energy, Elsevier, vol. 114(C), pages 837-844.
    14. Peng, Tianduo & Ou, Xunmin & Yuan, Zhiyi & Yan, Xiaoyu & Zhang, Xiliang, 2018. "Development and application of China provincial road transport energy demand and GHG emissions analysis model," Applied Energy, Elsevier, vol. 222(C), pages 313-328.
    15. Yaqun Liang & Xiaoen Zhao & Feng Chen & Yuda Yang & Fredrik Charpentier Ljungqvist, 2025. "Winter-spring drought in Yunnan since the early 19th century and its impact on social governance in China’s southwestern border regions," Humanities and Social Sciences Communications, Palgrave Macmillan, vol. 12(1), pages 1-15, December.
    16. Hadi Karimi & Sandra D. Ekşioğlu & Michael Carbajales-Dale, 2021. "A biobjective chance constrained optimization model to evaluate the economic and environmental impacts of biopower supply chains," Annals of Operations Research, Springer, vol. 296(1), pages 95-130, January.
    17. Chen, Zhongfei & Huang, Wanjing & Zheng, Xian, 2019. "The decline in energy intensity: Does financial development matter?," Energy Policy, Elsevier, vol. 134(C).
    18. Ru Fang, Yan & Zhang, Silu & Zhou, Ziqiao & Shi, Wenjun & Hui Xie, Guang, 2022. "Sustainable development in China: Valuation of bioenergy potential and CO2 reduction from crop straw," Applied Energy, Elsevier, vol. 322(C).
    19. Jiang, Jingjing & Ye, Bin & Liu, Junguo, 2019. "Peak of CO2 emissions in various sectors and provinces of China: Recent progress and avenues for further research," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 813-833.
    20. Li, Yi & Wang, Zhaohua & Wang, Ke & Zhang, Bin, 2021. "Fuel economy of Chinese light-duty car manufacturers: An efficiency analysis perspective," Energy, Elsevier, vol. 220(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:24:p:16729-:d:1002484. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.