IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v57y2013icp284-294.html
   My bibliography  Save this article

Life cycle assessment of rice straw co-firing with coal power generation in Malaysia

Author

Listed:
  • Shafie, S.M.
  • Mahlia, T.M.I.
  • Masjuki, H.H.

Abstract

This paper investigates the economic feasibility of rice straw co-firing at coal power plants in Malaysia and in doing so looks at the operating, capital, and logistic costs. Co-firing rice straw in an existing coal power plant is a technique that could reduce CO2 emissions and make Malaysia less dependency on coal resources. In a country such as Malaysia with abundant biomass resources, utilizing biomass residue also would help reach government targets of developing renewable energy under the country's Fuel Diversification Policy. The overall rice straw life cycle assessment presented here analyses environmental, energy and economic aspects for co-firing of rice straw at existing coal power plants in Malaysia. Analysis of GHG emissions and energy consumption throughout the entire co-firing rice straw life cycle was based on selected coal power plant capacity output. This paper also analyses the implication of rice straw use under different co-fired ratios, transportation systems and CO2 emission prices. The reduction of GHG emissions was found to be significant even at a lower co-firing ratio.

Suggested Citation

  • Shafie, S.M. & Mahlia, T.M.I. & Masjuki, H.H., 2013. "Life cycle assessment of rice straw co-firing with coal power generation in Malaysia," Energy, Elsevier, vol. 57(C), pages 284-294.
  • Handle: RePEc:eee:energy:v:57:y:2013:i:c:p:284-294
    DOI: 10.1016/j.energy.2013.06.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544213004969
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2013.06.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Suramaythangkoor, Tritib & Gheewala, Shabbir H., 2010. "Potential alternatives of heat and power technology application using rice straw in Thailand," Applied Energy, Elsevier, vol. 87(1), pages 128-133, January.
    2. Liu, Hongtao & Polenske, Karen R. & Xi, Youmin & Guo, Ju'e, 2010. "Comprehensive evaluation of effects of straw-based electricity generation: A Chinese case," Energy Policy, Elsevier, vol. 38(10), pages 6153-6160, October.
    3. Delivand, Mitra Kami & Barz, Mirko & Gheewala, Shabbir H., 2011. "Logistics cost analysis of rice straw for biomass power generation in Thailand," Energy, Elsevier, vol. 36(3), pages 1435-1441.
    4. Petrolia, Daniel R., 2006. "The Economics of Harvesting and Transporting Corn Stover for Conversion to Fuel Ethanol: A Case Study for Minnesota," Staff Papers 14213, University of Minnesota, Department of Applied Economics.
    5. Basu, Prabir & Butler, James & Leon, Mathias A., 2011. "Biomass co-firing options on the emission reduction and electricity generation costs in coal-fired power plants," Renewable Energy, Elsevier, vol. 36(1), pages 282-288.
    6. Renó, Maria Luiza Grillo & Lora, Electo Eduardo Silva & Palacio, José Carlos Escobar & Venturini, Osvaldo José & Buchgeister, Jens & Almazan, Oscar, 2011. "A LCA (life cycle assessment) of the methanol production from sugarcane bagasse," Energy, Elsevier, vol. 36(6), pages 3716-3726.
    7. Sebastián, F. & Royo, J. & Gómez, M., 2011. "Cofiring versus biomass-fired power plants: GHG (Greenhouse Gases) emissions savings comparison by means of LCA (Life Cycle Assessment) methodology," Energy, Elsevier, vol. 36(4), pages 2029-2037.
    8. Lim, Jeng Shiun & Abdul Manan, Zainuddin & Wan Alwi, Sharifah Rafidah & Hashim, Haslenda, 2012. "A review on utilisation of biomass from rice industry as a source of renewable energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 3084-3094.
    9. Suramaythangkoor, Tritib & Gheewala, Shabbir H., 2008. "Potential of practical implementation of rice straw-based power generation in Thailand," Energy Policy, Elsevier, vol. 36(8), pages 3183-3187, August.
    10. Heller, Martin C & Keoleian, Gregory A & Mann, Margaret K & Volk, Timothy A, 2004. "Life cycle energy and environmental benefits of generating electricity from willow biomass," Renewable Energy, Elsevier, vol. 29(7), pages 1023-1042.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. A. H. Truong & Minh Ha-Duong, 2018. "Impact of Co-firing Straw for Power Generation to Air Quality: A Case Study in Two Coal Power Plants in Vietnam," Post-Print hal-02352700, HAL.
    2. an Ha Truong & Hoang Anh Tran & Minh Ha-Duong, 2016. "Socio-economic impacts of co-firing in Vietnam: The case of Ninh Binh Coal Power Plant," Post-Print hal-01390558, HAL.
    3. Wang, Changbo & Chang, Yuan & Zhang, Lixiao & Chen, Yongsheng & Pang, Mingyue, 2018. "Quantifying uncertainties in greenhouse gas accounting of biomass power generation in China: System boundary and parameters," Energy, Elsevier, vol. 158(C), pages 121-127.
    4. Chitawo, Maxon L. & Chimphango, Annie F.A., 2017. "A synergetic integration of bioenergy and rice production in rice farms," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 58-67.
    5. Rezania, Shahabaldin & Md Din, Mohd Fadhil & Kamaruddin, Siti Fatimah & Taib, Shazwin Mat & Singh, Lakhveer & Yong, Ee Ling & Dahalan, Farrah Aini, 2016. "Evaluation of water hyacinth (Eichhornia crassipes) as a potential raw material source for briquette production," Energy, Elsevier, vol. 111(C), pages 768-773.
    6. Wang, Changbo & Zhang, Lixiao & Chang, Yuan & Pang, Mingyue, 2015. "Biomass direct-fired power generation system in China: An integrated energy, GHG emissions, and economic evaluation for Salix," Energy Policy, Elsevier, vol. 84(C), pages 155-165.
    7. Yi, Qun & Feng, Jie & Wu, Yanli & Li, Wenying, 2014. "3E (energy, environmental, and economy) evaluation and assessment to an innovative dual-gas polygeneration system," Energy, Elsevier, vol. 66(C), pages 285-294.
    8. Shafie, S.M. & Masjuki, H.H. & Mahlia, T.M.I., 2014. "Rice straw supply chain for electricity generation in Malaysia: Economical and environmental assessment," Applied Energy, Elsevier, vol. 135(C), pages 299-308.
    9. Restrepo, Álvaro & Bazzo, Edson, 2016. "Co-firing: An exergoenvironmental analysis applied to power plants modified for burning coal and rice straw," Renewable Energy, Elsevier, vol. 91(C), pages 107-119.
    10. Liu, Beibei & Wu, Qiaoran & Wang, Feng & Zhang, Bing, 2019. "Is straw return-to-field always beneficial? Evidence from an integrated cost-benefit analysis," Energy, Elsevier, vol. 171(C), pages 393-402.
    11. Patel, Madhumita & Zhang, Xiaolei & Kumar, Amit, 2016. "Techno-economic and life cycle assessment on lignocellulosic biomass thermochemical conversion technologies: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1486-1499.
    12. Hossain, Nazia & Zaini, Juliana & Indra Mahlia, Teuku Meurah, 2019. "Life cycle assessment, energy balance and sensitivity analysis of bioethanol production from microalgae in a tropical country," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    13. How, Bing Shen & Ngan, Sue Lin & Hong, Boon Hooi & Lam, Hon Loong & Ng, Wendy Pei Qin & Yusup, Suzana & Ghani, Wan Azlina Wan Abd Karim & Kansha, Yasuki & Chan, Yi Herng & Cheah, Kin Wai & Shahbaz, Mu, 2019. "An outlook of Malaysian biomass industry commercialisation: Perspectives and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    14. Shafie, S.M., 2016. "A review on paddy residue based power generation: Energy, environment and economic perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 1089-1100.
    15. Dzikuć, Maciej & Piwowar, Arkadiusz, 2016. "Ecological and economic aspects of electric energy production using the biomass co-firing method: The case of Poland," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 856-862.
    16. Akhtari, Shaghaygh & Sowlati, Taraneh & Day, Ken, 2014. "The effects of variations in supply accessibility and amount on the economics of using regional forest biomass for generating district heat," Energy, Elsevier, vol. 67(C), pages 631-640.
    17. Jayne Lois G. San Juan & Kathleen B. Aviso & Raymond R. Tan & Charlle L. Sy, 2019. "A Multi-Objective Optimization Model for the Design of Biomass Co-Firing Networks Integrating Feedstock Quality Considerations," Energies, MDPI, Open Access Journal, vol. 12(12), pages 1-24, June.
    18. Feng, Tian-tian & Gong, Xiao-lei & Guo, Yu-hua & Yang, Yi-sheng & Dong, Jun, 2019. "Regulatory mechanism design of GHG emissions in the electric power industry in China," Energy Policy, Elsevier, vol. 131(C), pages 187-201.
    19. Lingling Wang & Tsunemi Watanabe & Zhiwei Xu, 2015. "Monetization of External Costs Using Lifecycle Analysis—A Comparative Case Study of Coal-Fired and Biomass Power Plants in Northeast China," Energies, MDPI, Open Access Journal, vol. 8(2), pages 1-28, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shafie, S.M., 2016. "A review on paddy residue based power generation: Energy, environment and economic perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 1089-1100.
    2. Shafie, S.M. & Masjuki, H.H. & Mahlia, T.M.I., 2014. "Life cycle assessment of rice straw-based power generation in Malaysia," Energy, Elsevier, vol. 70(C), pages 401-410.
    3. Delivand, Mitra Kami & Barz, Mirko & Gheewala, Shabbir H. & Sajjakulnukit, Boonrod, 2011. "Economic feasibility assessment of rice straw utilization for electricity generating through combustion in Thailand," Applied Energy, Elsevier, vol. 88(11), pages 3651-3658.
    4. Zhang, Qin & Zhou, Dequn & Zhou, Peng & Ding, Hao, 2013. "Cost Analysis of straw-based power generation in Jiangsu Province, China," Applied Energy, Elsevier, vol. 102(C), pages 785-793.
    5. Chitawo, Maxon L. & Chimphango, Annie F.A., 2017. "A synergetic integration of bioenergy and rice production in rice farms," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 58-67.
    6. Ramamurthi, Pooja Vijay & Fernandes, Maria Cristina & Nielsen, Per Sieverts & Nunes, Clemente Pedro, 2016. "Utilisation of rice residues for decentralised electricity generation in Ghana: An economic analysis," Energy, Elsevier, vol. 111(C), pages 620-629.
    7. Silalertruksa, Thapat & Gheewala, Shabbir H. & Sagisaka, Masayuki & Yamaguchi, Katsunobu, 2013. "Life cycle GHG analysis of rice straw bio-DME production and application in Thailand," Applied Energy, Elsevier, vol. 112(C), pages 560-567.
    8. Muench, Stefan & Guenther, Edeltraud, 2013. "A systematic review of bioenergy life cycle assessments," Applied Energy, Elsevier, vol. 112(C), pages 257-273.
    9. Akhil Kadiyala & Raghava Kommalapati & Ziaul Huque, 2016. "Evaluation of the Life Cycle Greenhouse Gas Emissions from Different Biomass Feedstock Electricity Generation Systems," Sustainability, MDPI, Open Access Journal, vol. 8(11), pages 1-12, November.
    10. Turconi, Roberto & Boldrin, Alessio & Astrup, Thomas, 2013. "Life cycle assessment (LCA) of electricity generation technologies: Overview, comparability and limitations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 555-565.
    11. Ji, Xi & Long, Xianling, 2016. "A review of the ecological and socioeconomic effects of biofuel and energy policy recommendations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 41-52.
    12. Agbor, Ezinwa & Oyedun, Adetoyese Olajire & Zhang, Xiaolei & Kumar, Amit, 2016. "Integrated techno-economic and environmental assessments of sixty scenarios for co-firing biomass with coal and natural gas," Applied Energy, Elsevier, vol. 169(C), pages 433-449.
    13. Restrepo, Álvaro & Bazzo, Edson, 2016. "Co-firing: An exergoenvironmental analysis applied to power plants modified for burning coal and rice straw," Renewable Energy, Elsevier, vol. 91(C), pages 107-119.
    14. Chen, Yingchao & Feng, Lianyong & Wang, Jianliang & Höök, Mikael, 2017. "Emergy-based energy return on investment method for evaluating energy exploitation," Energy, Elsevier, vol. 128(C), pages 540-549.
    15. Naqvi, Muhammad & Yan, Jinyue & Dahlquist, Erik & Naqvi, Salman Raza, 2017. "Off-grid electricity generation using mixed biomass compost: A scenario-based study with sensitivity analysis," Applied Energy, Elsevier, vol. 201(C), pages 363-370.
    16. Patel, Madhumita & Zhang, Xiaolei & Kumar, Amit, 2016. "Techno-economic and life cycle assessment on lignocellulosic biomass thermochemical conversion technologies: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1486-1499.
    17. Dzikuć, Maciej & Piwowar, Arkadiusz, 2016. "Ecological and economic aspects of electric energy production using the biomass co-firing method: The case of Poland," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 856-862.
    18. Nygaard, Ivan & Dembelé, Filifing & Daou, Ibrahima & Mariko, Adama & Kamissoko, Famakan & Coulibaly, Nanourou & Borgstrøm, Rasmus L. & Bruun, Thilde Beck, 2016. "Lignocellulosic residues for production of electricity, biogas or second generation biofuel: A case study of technical and sustainable potential of rice straw in Mali," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 202-212.
    19. Pode, Ramchandra, 2016. "Potential applications of rice husk ash waste from rice husk biomass power plant," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1468-1485.
    20. M. Mofijur & T.M.I. Mahlia & J. Logeswaran & M. Anwar & A.S. Silitonga & S.M. Ashrafur Rahman & A.H. Shamsuddin, 2019. "Potential of Rice Industry Biomass as a Renewable Energy Source," Energies, MDPI, Open Access Journal, vol. 12(21), pages 1-21, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:57:y:2013:i:c:p:284-294. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: http://www.journals.elsevier.com/energy .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.