IDEAS home Printed from
MyIDEAS: Login to save this article or follow this journal

A review on the pattern of electricity generation and emission in Indonesia from 1987 to 2009

  • Hasan, M.H.
  • Muzammil, W.K.
  • Mahlia, T.M.I.
  • Jannifar, A.
  • Hasanuddin, I.
Registered author(s):

    The level of energy demand plays a fundamental role in today's society. It is a vital input in supporting the physical and social development of a country, as well as national economic growth. Looking at the energy demand scenario in present time, the global energy consumption is likely to grow faster than the population growth across the world. Like any other energy sectors, electricity demand has significantly increased in Indonesia over the past years. Currently, there are six types of power plants in the country. The main sources of electrical energy are generated using the gas turbines, steam turbines, combined cycles, geothermal, diesel engine and hydro-powers. Most of Indonesia's power plants are using fossil fuel for electricity generation. Substantial growth in domestic energy demand, however, would be a major challenge for Indonesia's energy supply sector in the future. Over the past decade, thermal power plants generated about 86.69% of electricity and about 13.31% was generated by renewable energy such as hydro-power and geothermal in 2009. The purpose of this study is to chronicle and show a clear view of 23 years trend of Indonesia's electricity generation industry. Furthermore, the capacity of power generation installed and electricity generation from 1987 to 2009 has been gathered for this study. The total pollutant emissions and emission per unit electricity generation for each type of power plants have been also calculated using emission factors. Also, the pattern of electricity generation and emission has been presented. The results show that the implementation and contribution of combined cycle power plants should be increased together with renewable energy and natural gas which are recommended to reduce greenhouse gas emission.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Article provided by Elsevier in its journal Renewable and Sustainable Energy Reviews.

    Volume (Year): 16 (2012)
    Issue (Month): 5 ()
    Pages: 3206-3219

    in new window

    Handle: RePEc:eee:rensus:v:16:y:2012:i:5:p:3206-3219
    Contact details of provider: Web page:

    Order Information: Postal:

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

    as in new window
    1. Reinders, A. H. M. E. & Pramusito & Sudradjat, A. & van Dijk, V. A. P. & Mulyadi, R. & Turkenburg, W. C., 1999. "Sukatani revisited: on the performance of nine-year-old solar home systems and street lighting systems in Indonesia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 3(1), pages 1-47, March.
    2. Rachmatullah, C. & Aye, Lu & Fuller, R.J., 2007. "Scenario planning for the electricity generation in Indonesia," Energy Policy, Elsevier, vol. 35(4), pages 2352-2359, April.
    3. Shekarchian, M. & Moghavvemi, M. & Mahlia, T.M.I. & Mazandarani, A., 2011. "A review on the pattern of electricity generation and emission in Malaysia from 1976 to 2008," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(6), pages 2629-2642, August.
    4. Watanabe, Chihiro & Widayanti, Tjahya, 1992. "Myth of energy competitiveness in energy producing countries : Comparative analysis between Indonesia and Japan," Energy Economics, Elsevier, vol. 14(4), pages 291-301, October.
    5. Yoo, Seung-Hoon & Kim, Yeonbae, 2006. "Electricity generation and economic growth in Indonesia," Energy, Elsevier, vol. 31(14), pages 2890-2899.
    6. Djoni Hartono & Budy P. Resosudarmo, 2007. "The Economy-wide Impact of Controlling Energy Consumption in Indonesia: An Analysis Using a Social Accounting Matrix Framework," Working Papers in Economics and Development Studies (WoPEDS) 200702, Department of Economics, Padjadjaran University, revised Jan 2007.
    7. Rosyid, H. & Koestoer, R. & Putra, N. & Nasruddin, & Mohamad, A.A. & Yanuar,, 2010. "Sensitivity analysis of steam power plant-binary cycle," Energy, Elsevier, vol. 35(9), pages 3578-3586.
    8. Saidur, R. & Rahim, N.A. & Islam, M.R. & Solangi, K.H., 2011. "Environmental impact of wind energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(5), pages 2423-2430, June.
    9. Mahlia, T.M.I, 2002. "Emissions from electricity generation in Malaysia," Renewable Energy, Elsevier, vol. 27(2), pages 293-300.
    10. Fatai, K & Oxley, Les & Scrimgeour, F.G, 2004. "Modelling the causal relationship between energy consumption and GDP in New Zealand, Australia, India, Indonesia, The Philippines and Thailand," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 64(3), pages 431-445.
    11. Saidur, R. & Mahlia, T.M.I., 2010. "Energy, economic and environmental benefits of using high-efficiency motors to replace standard motors for the Malaysian industries," Energy Policy, Elsevier, vol. 38(8), pages 4617-4625, August.
    12. Mahlia, T.M.I. & Abdulmuin, M.Z. & Alamsyah, T.M.I. & Mukhlishien, D., 2003. "Dynamic modeling and simulation of a palm wastes boiler," Renewable Energy, Elsevier, vol. 28(8), pages 1235-1256.
    13. Mazandarani, A. & Mahlia, T.M.I. & Chong, W.T. & Moghavvemi, M., 2010. "A review on the pattern of electricity generation and emission in Iran from 1967 to 2008," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(7), pages 1814-1829, September.
    14. Mahlia, T. M. I. & Masjuki, H. H. & Saidur, R. & Amalina, M. A., 2004. "Viewpoint: Mitigation of emissions through energy efficiency standards for room air conditioners in Malaysia," Energy Policy, Elsevier, vol. 32(16), pages 1783-1787, November.
    15. Jayed, M.H. & Masjuki, H.H. & Kalam, M.A. & Mahlia, T.M.I. & Husnawan, M. & Liaquat, A.M., 2011. "Prospects of dedicated biodiesel engine vehicles in Malaysia and Indonesia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 220-235, January.
    16. Mazandarani, A. & Mahlia, T.M.I. & Chong, W.T. & Moghavvemi, M., 2011. "Fuel consumption and emission prediction by Iranian power plants until 2025," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(3), pages 1575-1592, April.
    17. Miller, Damian & Hope, Chris, 2000. "Learning to lend for off-grid solar power: policy lessons from World Bank loans to India, Indonesia, and Sri Lanka," Energy Policy, Elsevier, vol. 28(2), pages 87-105, February.
    18. Suntana, Asep S. & Vogt, Kristiina A. & Turnblom, Eric C. & Upadhye, Ravi, 2009. "Bio-methanol potential in Indonesia: Forest biomass as a source of bio-energy that reduces carbon emissions," Applied Energy, Elsevier, vol. 86(Supplemen), pages S215-S221, November.
    19. Cahyono Adi, Agus & Malik, Cecilya L & Nurrohim, Agus & Sutamihardja, RTM & Nur Hidajat, M. & Santoso, Iman B & Amirrusdi & Suwarto, Amien, 1997. "Mitigation of carbon dioxide from Indonesia's energy system," Applied Energy, Elsevier, vol. 56(3-4), pages 253-263, March.
    20. Wijarso,, 1981. "National energy planning in Indonesia," Energy, Elsevier, vol. 6(8), pages 737-744.
    21. Rozali, Rahmat & Mostavan, Aman & Albright, Spencer, 1993. "Sustainable development in Indonesia: A renewable energy perspective," Renewable Energy, Elsevier, vol. 3(2), pages 173-174.
    22. Chong, W.T. & Naghavi, M.S. & Poh, S.C. & Mahlia, T.M.I. & Pan, K.C., 2011. "Techno-economic analysis of a wind–solar hybrid renewable energy system with rainwater collection feature for urban high-rise application," Applied Energy, Elsevier, vol. 88(11), pages 4067-4077.
    Full references (including those not matched with items on IDEAS)

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:16:y:2012:i:5:p:3206-3219. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Zhang, Lei)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.