IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v86y2009isupplement1ps215-s221.html
   My bibliography  Save this article

Bio-methanol potential in Indonesia: Forest biomass as a source of bio-energy that reduces carbon emissions

Author

Listed:
  • Suntana, Asep S.
  • Vogt, Kristiina A.
  • Turnblom, Eric C.
  • Upadhye, Ravi

Abstract

Since Indonesia has significant land area in different forest types that could be used to produce biofuels, the potential to sustainably collect and convert forest materials to methanol for use in energy production was examined. Using the annually available aboveground forest biomass, from 40 to 168 billion l of bio-methanol could be produced for use as a transportation fuel and/or to supply fuel cells to produce electricity. When a lower forest biomass availability estimate was used to determine how much electricity (methanol fed into fuel cells) could be produced in Indonesia, more than 10 million households or about 12,000 villages (20% of the total rural villages in Indonesia) would be supplied annually with electricity. Collecting forest biomass at the higher end of the estimated available biomass and converting it to methanol to supply fuel cells could provide electricity to more than 42 million households annually. This would be approximately 52,000 villages, or 86% of the total rural villages in Indonesia. When electricity is produced with bio-methanol/fuel cells, it could potentially supply from half to all of the current electricity consumed in Indonesia. By generating electricity using bio-methanol/fuel cells instead of from fossil fuels, from 9 to 38% of the total carbon currently emitted each year in Indonesia could be avoided. In contrast, substituting this same amount of bio-methanol for gasoline could provide all of the annual gasoline needs of Indonesia and contribute towards reducing their carbon emissions by about 8-35%.

Suggested Citation

  • Suntana, Asep S. & Vogt, Kristiina A. & Turnblom, Eric C. & Upadhye, Ravi, 2009. "Bio-methanol potential in Indonesia: Forest biomass as a source of bio-energy that reduces carbon emissions," Applied Energy, Elsevier, vol. 86(Supplemen), pages 215-221, November.
  • Handle: RePEc:eee:appene:v:86:y:2009:i:supplement1:p:s215-s221
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/B6V1T-4WH6KSC-2/2/fc3d8d7de28c7078a196f2cc644aaeb2
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Safieddin Ardebili, M. & Ghobadian, B. & Najafi, G. & Chegeni, A., 2011. "Biodiesel production potential from edible oil seeds in Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(6), pages 3041-3044, August.
    2. Deendarlianto, & Widyaparaga, Adhika & Sopha, Bertha Maya & Budiman, Arief & Muthohar, Imam & Setiawan, Indra Chandra & Lindasista, Alia & Soemardjito, Joewono & Oka, Kazutaka, 2017. "Scenarios analysis of energy mix for road transportation sector in Indonesia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 13-23.
    3. Batidzirai, B. & Smeets, E.M.W. & Faaij, A.P.C., 2012. "Harmonising bioenergy resource potentials—Methodological lessons from review of state of the art bioenergy potential assessments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(9), pages 6598-6630.
    4. Kinoshita, Tsuguki & Ohki, Takashi & Yamagata, Yoshiki, 2010. "Woody biomass supply potential for thermal power plants in Japan," Applied Energy, Elsevier, vol. 87(9), pages 2923-2927, September.
    5. Hasan, M.H. & Muzammil, W.K. & Mahlia, T.M.I. & Jannifar, A. & Hasanuddin, I., 2012. "A review on the pattern of electricity generation and emission in Indonesia from 1987 to 2009," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 3206-3219.
    6. Singh, Rajbeer & Setiawan, Andri D., 2013. "Biomass energy policies and strategies: Harvesting potential in India and Indonesia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 332-345.
    7. Montuori, Lina & Alcázar-Ortega, Manuel & Álvarez-Bel, Carlos & Domijan, Alex, 2014. "Integration of renewable energy in microgrids coordinated with demand response resources: Economic evaluation of a biomass gasification plant by Homer Simulator," Applied Energy, Elsevier, vol. 132(C), pages 15-22.
    8. Hosseini, Seyed Ehsan & Andwari, Amin Mahmoudzadeh & Wahid, Mazlan Abdul & Bagheri, Ghobad, 2013. "A review on green energy potentials in Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 533-545.
    9. Hunggul Yudono Setio Hadi Nugroho & Fitri Nurfatriani & Yonky Indrajaya & Tri Wira Yuwati & Sulistya Ekawati & Mimi Salminah & Hendra Gunawan & Subarudi Subarudi & Markus Kudeng Sallata & Merryana Kid, 2022. "Mainstreaming Ecosystem Services from Indonesia’s Remaining Forests," Sustainability, MDPI, vol. 14(19), pages 1-39, September.
    10. Tye, Ying Ying & Lee, Keat Teong & Wan Abdullah, Wan Nadiah & Leh, Cheu Peng, 2011. "Second-generation bioethanol as a sustainable energy source in Malaysia transportation sector: Status, potential and future prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 4521-4536.
    11. Jannis Langer & Jaco Quist & Kornelis Blok, 2021. "Review of Renewable Energy Potentials in Indonesia and Their Contribution to a 100% Renewable Electricity System," Energies, MDPI, vol. 14(21), pages 1-21, October.
    12. Muth, D.J. & Bryden, K.M. & Nelson, R.G., 2013. "Sustainable agricultural residue removal for bioenergy: A spatially comprehensive US national assessment," Applied Energy, Elsevier, vol. 102(C), pages 403-417.
    13. Zhang, Yanting & Fan, Xiaolei & Yang, Zhiman & Wang, Huanyu & Yang, Dawei & Guo, Rongbo, 2012. "Characterization of H2 photoproduction by a new marine green alga, Platymonas helgolandica var. tsingtaoensis," Applied Energy, Elsevier, vol. 92(C), pages 38-43.
    14. Imran, A. & Varman, M. & Masjuki, H.H. & Kalam, M.A., 2013. "Review on alcohol fumigation on diesel engine: A viable alternative dual fuel technology for satisfactory engine performance and reduction of environment concerning emission," Renewable and Sustainable Energy Reviews, Elsevier, vol. 26(C), pages 739-751.
    15. Schmidt, Johannes & Leduc, Sylvain & Dotzauer, Erik & Kindermann, Georg & Schmid, Erwin, 2010. "Cost-effective CO2 emission reduction through heat, power and biofuel production from woody biomass: A spatially explicit comparison of conversion technologies," Applied Energy, Elsevier, vol. 87(7), pages 2128-2141, July.
    16. Joselin Herbert, G.M. & Unni Krishnan, A., 2016. "Quantifying environmental performance of biomass energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 292-308.
    17. Raquel Fernández-González & Félix Puime Guillén & Otilia Manta & Simona Andreea Apostu & Valentina Vasile, 2022. "Forest Management Communities’ Participation in Bioenergy Production Initiatives: A Case Study for Galicia (Spain)," Energies, MDPI, vol. 15(19), pages 1-17, October.
    18. Hasan, M.H. & Mahlia, T.M.I. & Nur, Hadi, 2012. "A review on energy scenario and sustainable energy in Indonesia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(4), pages 2316-2328.
    19. Pinto, Lígia Costa & Sousa, Sara & Valente, Marieta, 2022. "Forest bioenergy as a land and wildfire management tool: Economic valuation under different informational contexts," Energy Policy, Elsevier, vol. 161(C).
    20. Khatiwada, Dilip & Silveira, Semida, 2017. "Scenarios for bioethanol production in Indonesia: How can we meet mandatory blending targets?," Energy, Elsevier, vol. 119(C), pages 351-361.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:86:y:2009:i:supplement1:p:s215-s221. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.