IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i21p7033-d665749.html
   My bibliography  Save this article

Review of Renewable Energy Potentials in Indonesia and Their Contribution to a 100% Renewable Electricity System

Author

Listed:
  • Jannis Langer

    (Faculty of Technology, Policy and Management, Department of Engineering Systems and Services, Delft University of Technology, Jaffalaan 5, 2628BX Delft, The Netherlands)

  • Jaco Quist

    (Faculty of Technology, Policy and Management, Department of Engineering Systems and Services, Delft University of Technology, Jaffalaan 5, 2628BX Delft, The Netherlands)

  • Kornelis Blok

    (Faculty of Technology, Policy and Management, Department of Engineering Systems and Services, Delft University of Technology, Jaffalaan 5, 2628BX Delft, The Netherlands)

Abstract

Indonesia has an increasing electricity demand that is mostly met with fossil fuels. Although Indonesia plans to ramp up Renewable Energy Technologies (RET), implementation has been slow. This is unfortunate, as the RET potential in Indonesia might be higher than currently assumed given the archipelago’s size. However, there is no literature overview of RET potentials in Indonesia and to what extent they can meet current and future electricity demand coverage. This paper reviews contemporary literature on the potential of nine RET in Indonesia and analyses their impact in terms of area and demand coverage. The study concludes that Indonesia hosts massive amounts of renewable energy resources on both land and sea. The potentials in the academic and industrial literature tend to be considerably larger than the ones from the Indonesian Energy Ministry on which current energy policies are based. Moreover, these potentials could enable a 100% renewables electricity system and meet future demand with limited impact on land availability. Nonetheless, the review showed that the research topic is still under-researched with three detected knowledge gaps, namely the lack of (i) economic RET potentials, (ii) research on the integrated spatial potential mapping of several RET and (iii) empirical data on natural resources. Lastly, this study provides research and policy recommendations to promote RET in Indonesia.

Suggested Citation

  • Jannis Langer & Jaco Quist & Kornelis Blok, 2021. "Review of Renewable Energy Potentials in Indonesia and Their Contribution to a 100% Renewable Electricity System," Energies, MDPI, vol. 14(21), pages 1-21, October.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:21:p:7033-:d:665749
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/21/7033/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/21/7033/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ribal, Agustinus & Babanin, Alexander V. & Zieger, Stefan & Liu, Qingxiang, 2020. "A high-resolution wave energy resource assessment of Indonesia," Renewable Energy, Elsevier, vol. 160(C), pages 1349-1363.
    2. Burke, Paul J. & Widnyana, Jinnie & Anjum, Zeba & Aisbett, Emma & Resosudarmo, Budy & Baldwin, Kenneth G.H., 2019. "Overcoming barriers to solar and wind energy adoption in two Asian giants: India and Indonesia," Energy Policy, Elsevier, vol. 132(C), pages 1216-1228.
    3. Babarit, A., 2015. "A database of capture width ratio of wave energy converters," Renewable Energy, Elsevier, vol. 80(C), pages 610-628.
    4. Handayani, Kamia & Krozer, Yoram & Filatova, Tatiana, 2019. "From fossil fuels to renewables: An analysis of long-term scenarios considering technological learning," Energy Policy, Elsevier, vol. 127(C), pages 134-146.
    5. Khalil, Munawar & Berawi, Mohammed Ali & Heryanto, Rudi & Rizalie, Akhmad, 2019. "Waste to energy technology: The potential of sustainable biogas production from animal waste in Indonesia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 323-331.
    6. Asian Development Bank (ADB), 2014. "Wave Energy Conversion and Ocean Thermal Energy Conversion Potential in Developing Member Countries," ADB Reports RPT146488-3, Asian Development Bank (ADB), revised 01 Jul 2014.
    7. Hoogwijk, Monique & de Vries, Bert & Turkenburg, Wim, 2004. "Assessment of the global and regional geographical, technical and economic potential of onshore wind energy," Energy Economics, Elsevier, vol. 26(5), pages 889-919, September.
    8. Roshan Sharma & Jaya Wahono & Himlal Baral, 2018. "Bamboo as an Alternative Bioenergy Crop and Powerful Ally for Land Restoration in Indonesia," Sustainability, MDPI, vol. 10(12), pages 1-10, November.
    9. Alfeus Sunarso & Kunhali Ibrahim-Bathis & Sakti A. Murti & Irwan Budiarto & Harold S. Ruiz, 2020. "GIS-Based Assessment of the Technical and Economic Feasibility of Utility-Scale Solar PV Plants: Case Study in West Kalimantan Province," Sustainability, MDPI, vol. 12(15), pages 1-12, August.
    10. Blunden, L.S. & Bahaj, A.S. & Aziz, N.S., 2013. "Tidal current power for Indonesia? An initial resource estimation for the Alas Strait," Renewable Energy, Elsevier, vol. 49(C), pages 137-142.
    11. Wanggi Jaung & Edi Wiraguna & Beni Okarda & Yustina Artati & Chun Sheng Goh & Ramdhoni Syahru & Budi Leksono & Lilik Budi Prasetyo & Soo Min Lee & Himlal Baral, 2018. "Spatial Assessment of Degraded Lands for Biofuel Production in Indonesia," Sustainability, MDPI, vol. 10(12), pages 1-17, December.
    12. Kumar, Subhash, 2016. "Assessment of renewables for energy security and carbon mitigation in Southeast Asia: The case of Indonesia and Thailand," Applied Energy, Elsevier, vol. 163(C), pages 63-70.
    13. Darmawi, & Sipahutar, Riman & Bernas, Siti Masreah & Imanuddin, Momon Sodik, 2013. "Renewable energy and hydropower utilization tendency worldwide," Renewable and Sustainable Energy Reviews, Elsevier, vol. 17(C), pages 213-215.
    14. Hasan, M.H. & Mahlia, T.M.I. & Nur, Hadi, 2012. "A review on energy scenario and sustainable energy in Indonesia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(4), pages 2316-2328.
    15. Bosch, Jonathan & Staffell, Iain & Hawkes, Adam D., 2018. "Temporally explicit and spatially resolved global offshore wind energy potentials," Energy, Elsevier, vol. 163(C), pages 766-781.
    16. Nasruddin, & Idrus Alhamid, M. & Daud, Yunus & Surachman, Arief & Sugiyono, Agus & Aditya, H.B. & Mahlia, T.M.I., 2016. "Potential of geothermal energy for electricity generation in Indonesia: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 733-740.
    17. Veldhuis, A.J. & Reinders, A.H.M.E., 2015. "Reviewing the potential and cost-effectiveness of off-grid PV systems in Indonesia on a provincial level," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 757-769.
    18. Maulidia, Martha & Dargusch, Paul & Ashworth, Peta & Ardiansyah, Fitrian, 2019. "Rethinking renewable energy targets and electricity sector reform in Indonesia: A private sector perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 231-247.
    19. Gernaat, David E.H.J. & Van Vuuren, Detlef P. & Van Vliet, Jasper & Sullivan, Patrick & Arent, Douglas J., 2014. "Global long-term cost dynamics of offshore wind electricity generation," Energy, Elsevier, vol. 76(C), pages 663-672.
    20. Veldhuis, A.J. & Reinders, A.H.M.E., 2013. "Reviewing the potential and cost-effectiveness of grid-connected solar PV in Indonesia on a provincial level," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 315-324.
    21. Chaurey, Akanksha & Ranganathan, Malini & Mohanty, Parimita, 2004. "Electricity access for geographically disadvantaged rural communities--technology and policy insights," Energy Policy, Elsevier, vol. 32(15), pages 1693-1705, October.
    22. Quirapas, Mary Ann Joy Robles & Lin, Htet & Abundo, Michael Lochinvar Sim & Brahim, Sahara & Santos, Diane, 2015. "Ocean renewable energy in Southeast Asia: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 799-817.
    23. Suntana, Asep S. & Vogt, Kristiina A. & Turnblom, Eric C. & Upadhye, Ravi, 2009. "Bio-methanol potential in Indonesia: Forest biomass as a source of bio-energy that reduces carbon emissions," Applied Energy, Elsevier, vol. 86(Supplemen), pages 215-221, November.
    24. Pambudi, Nugroho Agung, 2018. "Geothermal power generation in Indonesia, a country within the ring of fire: Current status, future development and policy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2893-2901.
    25. Sambodo, Maxensius Tri & Novandra, Rio, 2019. "The state of energy poverty in Indonesia and its impact on welfare," Energy Policy, Elsevier, vol. 132(C), pages 113-121.
    26. Purwanto, Widodo Wahyu & Pratama, Yoga Wienda & Nugroho, Yulianto Sulistyo & Warjito, & Hertono, Gatot Fatwanto & Hartono, Djoni & Deendarlianto, & Tezuka, Tetsuo, 2015. "Multi-objective optimization model for sustainable Indonesian electricity system: Analysis of economic, environment, and adequacy of energy sources," Renewable Energy, Elsevier, vol. 81(C), pages 308-318.
    27. Langer, Jannis & Cahyaningwidi, Aida Astuti & Chalkiadakis, Charis & Quist, Jaco & Hoes, Olivier & Blok, Kornelis, 2021. "Plant siting and economic potential of ocean thermal energy conversion in Indonesia a novel GIS-based methodology," Energy, Elsevier, vol. 224(C).
    28. Abidah B. Setyowati, 2020. "Mitigating Energy Poverty: Mobilizing Climate Finance to Manage the Energy Trilemma in Indonesia," Sustainability, MDPI, vol. 12(4), pages 1-18, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nurul Hiron & Nundang Busaeri & Sutisna Sutisna & Nurmela Nurmela & Aceng Sambas, 2021. "Design of Hybrid (PV-Diesel) System for Tourist Island in Karimunjawa Indonesia," Energies, MDPI, vol. 14(24), pages 1-24, December.
    2. Gian Paolo Clemente & Alessandra Cornaro & Rosanna Grassi & Giorgio Rizzini, 2022. "Strategic energy flows in input-output relations: a temporal multilayer approach," Papers 2212.11585, arXiv.org.
    3. Setyowati, Abidah B. & Quist, Jaco, 2022. "Contested transition? Exploring the politics and process of regional energy planning in Indonesia," Energy Policy, Elsevier, vol. 165(C).
    4. Langer, Jannis & Zaaijer, Michiel & Quist, Jaco & Blok, Kornelis, 2023. "Introducing site selection flexibility to technical and economic onshore wind potential assessments: New method with application to Indonesia," Renewable Energy, Elsevier, vol. 202(C), pages 320-335.
    5. Yue, Xianghua & Peng, Michael Yao-Ping & Anser, Muhammad Khalid & Nassani, Abdelmohsen A. & Haffar, Mohamed & Zaman, Khalid, 2022. "The role of carbon taxes, clean fuels, and renewable energy in promoting sustainable development: How green is nuclear energy?," Renewable Energy, Elsevier, vol. 193(C), pages 167-178.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rahman, Arief & Dargusch, Paul & Wadley, David, 2021. "The political economy of oil supply in Indonesia and the implications for renewable energy development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    2. Langer, Jannis & Cahyaningwidi, Aida Astuti & Chalkiadakis, Charis & Quist, Jaco & Hoes, Olivier & Blok, Kornelis, 2021. "Plant siting and economic potential of ocean thermal energy conversion in Indonesia a novel GIS-based methodology," Energy, Elsevier, vol. 224(C).
    3. Deendarlianto, & Widyaparaga, Adhika & Sopha, Bertha Maya & Budiman, Arief & Muthohar, Imam & Setiawan, Indra Chandra & Lindasista, Alia & Soemardjito, Joewono & Oka, Kazutaka, 2017. "Scenarios analysis of energy mix for road transportation sector in Indonesia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 13-23.
    4. Rahman, Arief & Richards, Russell & Dargusch, Paul & Wadley, David, 2023. "Pathways to reduce Indonesia’s dependence on oil and achieve longer-term decarbonization," Renewable Energy, Elsevier, vol. 202(C), pages 1305-1323.
    5. Sani, L. & Khatiwada, D. & Harahap, F. & Silveira, S., 2021. "Decarbonization pathways for the power sector in Sumatra, Indonesia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    6. Langer, Jannis & Quist, Jaco & Blok, Kornelis, 2022. "Upscaling scenarios for ocean thermal energy conversion with technological learning in Indonesia and their global relevance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    7. Khalil, Munawar & Berawi, Mohammed Ali & Heryanto, Rudi & Rizalie, Akhmad, 2019. "Waste to energy technology: The potential of sustainable biogas production from animal waste in Indonesia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 323-331.
    8. Tang, Shengwen & Chen, Jingtao & Sun, Peigui & Li, Yang & Yu, Peng & Chen, E., 2019. "Current and future hydropower development in Southeast Asia countries (Malaysia, Indonesia, Thailand and Myanmar)," Energy Policy, Elsevier, vol. 129(C), pages 239-249.
    9. Yash Chawla & Anna Kowalska-Pyzalska & Widayat Widayat, 2019. "Consumer Willingness and Acceptance of Smart Meters in Indonesia," Resources, MDPI, vol. 8(4), pages 1-23, November.
    10. Tanoto, Yusak & Haghdadi, Navid & Bruce, Anna & MacGill, Iain, 2021. "Reliability-cost trade-offs for electricity industry planning with high variable renewable energy penetrations in emerging economies: A case study of Indonesia’s Java-Bali grid," Energy, Elsevier, vol. 227(C).
    11. Tanoto, Yusak & Haghdadi, Navid & Bruce, Anna & MacGill, Iain, 2020. "Clustering based assessment of cost, security and environmental tradeoffs with possible future electricity generation portfolios," Applied Energy, Elsevier, vol. 270(C).
    12. Dai, Hancheng & Silva Herran, Diego & Fujimori, Shinichiro & Masui, Toshihiko, 2016. "Key factors affecting long-term penetration of global onshore wind energy integrating top-down and bottom-up approaches," Renewable Energy, Elsevier, vol. 85(C), pages 19-30.
    13. Heffron, Raphael J. & Körner, Marc-Fabian & Sumarno, Theresia & Wagner, Jonathan & Weibelzahl, Martin & Fridgen, Gilbert, 2022. "How different electricity pricing systems affect the energy trilemma: Assessing Indonesia's electricity market transition," Energy Economics, Elsevier, vol. 107(C).
    14. Pratama, Yoga Wienda & Purwanto, Widodo Wahyu & Tezuka, Tetsuo & McLellan, Benjamin Craig & Hartono, Djoni & Hidayatno, Akhmad & Daud, Yunus, 2017. "Multi-objective optimization of a multiregional electricity system in an archipelagic state: The role of renewable energy in energy system sustainability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 423-439.
    15. Setyawati, Dinita, 2020. "Analysis of perceptions towards the rooftop photovoltaic solar system policy in Indonesia," Energy Policy, Elsevier, vol. 144(C).
    16. Setyowati, Abidah B. & Quist, Jaco, 2022. "Contested transition? Exploring the politics and process of regional energy planning in Indonesia," Energy Policy, Elsevier, vol. 165(C).
    17. Trivedi, Ashish & Trivedi, Vibha & Pandey, Krishan Kumar & Chichi, Ouissal, 2023. "An interpretive model to assess the barriers to ocean energy toward blue economic development in India," Renewable Energy, Elsevier, vol. 211(C), pages 822-830.
    18. Simsek, Yeliz & Sahin, Hasret & Lorca, Álvaro & Santika, Wayan G. & Urmee, Tania & Escobar, Rodrigo, 2020. "Comparison of energy scenario alternatives for Chile: Towards low-carbon energy transition by 2030," Energy, Elsevier, vol. 206(C).
    19. Yonariza, & Andini, Bevi Astika & Mahdi, & Maynard, Simone, 2019. "Addressing knowledge gaps between stakeholders in payments for watershed services: Case of Koto Panjang hydropower plant catchment area, Sumatra, Indonesia," Ecosystem Services, Elsevier, vol. 39(C).
    20. Gulagi, Ashish & Alcanzare, Myron & Bogdanov, Dmitrii & Esparcia, Eugene & Ocon, Joey & Breyer, Christian, 2021. "Transition pathway towards 100% renewable energy across the sectors of power, heat, transport, and desalination for the Philippines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:21:p:7033-:d:665749. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.